Python Pandas数据结构简单介绍
Series
Series 类似一维数组,由一组数据及一组相关数据标签组成。使用pandas的Series类即可创建。
import pandas as pd s1 = pd.Series(['a', 'b', 'c,', 'd']) print(s1)
#输出: 0 a # 1 b # 2 c # 3 d # dtype: object
上面是传入一个列表实现,上面的0,1,2,3就是数据的默认标签。另外可以通过index属性自定义标签。
s2 = pd.Series(['1', '2', '3,', '4'],index=['a', 'b', 'c,', 'd']) # index设置自定义索引 print(s2)
另外Series还可以通过字典传参。
s3 = pd.Series({'a':1,'b':2}) print(s3.values) # 通过values获取它的值
DataFrame
DataFrame是由一组数据和一组索引组成的数据结构,有行索引和列索引。和excel类似,是一种表格型数据结构。下面的就是一种简单的DataFrame数据格式
技能 0 python 1 Java
DataFrame类中可传入列表实例化一个dataframe的表格数据对象,此时行和列索引默认都是0.常见的是传入嵌套的列表,嵌套的里面的列表也可以是元祖,如果不指定索引行列索引都是从0,1开始自增,并可以通过columns、index自定义的列索引和行索引。详见下面的代码。
import pandas as pd df2 = pd.DataFrame([('a','A'),('b','B'),('c','C'),('d','D')]) # 传一个嵌套列表,嵌套里的数据可以是元祖,也可是列表 print(df2)
输出的格式如下:
0 1 0 a A 1 b B 2 c C 3 d D
df3 = pd.DataFrame([('a','A'),('b','B'),('c','C'),('d','D')],columns=['小写','大写']) print(df3)
小写 大写 0 a A 1 b B 2 c C 3 d D
DataFrame类中也可传入字典来实例化一个dataframe的表格数据对象,此时字典的key就相当于列索引,此时行索引默认还是从0开始,另外也可通过 index来自定义列索引。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
相关文章
Python3实现将本地JSON大数据文件写入MySQL数据库的方法
这篇文章主要介绍了Python3实现将本地JSON大数据文件写入MySQL数据库的方法,涉及Python针对json大数据文件的逐行读取、mysql数据库写入等相关操作技巧,需要的朋友可以参考下2018-06-06详解Python prometheus_client使用方式
本文主要介绍了Python prometheus_client使用方式,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下2022-02-02
最新评论