python买卖股票的最佳时机(基于贪心/蛮力算法)

 更新时间:2019年07月05日 14:59:10   作者:剑峰随心  
这篇文章主要介绍了python买卖股票的最佳时机(基于贪心/蛮力算法),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

开始刷leetcode算法题 今天做的是“买卖股票的最佳时机”

题目要求

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

看到这个题目 最初的想法是蛮力法

通过两层循环 不断计算不同天之间的利润及利润和

下面上代码

class Solution(object):
  def maxProfit(self, prices):
    """
    :type prices: List[int]
    :rtype: int
    """

    self.allbuy1 = []  #单次买卖的差值数组 (可能为负)
    self.allbuy2 = []  #所有可能买卖的利润数组 (可能为负)
               # allbuy1和allbuy2的区别为一个是单次买卖 一个是多次买卖和
    self.curbuy(prices,0,0) #prices 为价格表 0:初始 0:
    #print(self.allbuy1)
    #print(self.allbuy2)
    return self.picBigest(self.allbuy2)
  def buyticket(self,prilist,a,b):    #list:放入的价格数组 a:上一次买入的价格 b:今天卖出的价格
    return prilist[b] -prilist[a]  #返回 赚取得价格

  def curbuy(self,plist,x,result): #plist:价格数组 x:当天的数组坐标 result: 利润
    obj=result           #固定上一次的价格 保存为上一个递归
    lens=len(plist)        #天数
    for i in range(x,lens-1):
      for j in range(i+1,lens):
        temp=self.buyticket(plist,i, j)
        self.allbuy1.append(temp)
        self.allbuy2.append(temp)   #单次利润放入数组
        result = obj + temp   #将之前的利润加上今天的利润
        if(x>=2):       #如果买入是第2+1天以后 则可以加上之前的利润
          self.allbuy2.append(result) #多次买卖利润放入数组
        self.curbuy(plist,j+1,result)  #递归 j+1:卖出的后一天 result:利润

  def picBigest(self,reslist): 
    big=0
    for i in reslist:
      if (i>big):
        big=i
    print(big)
    return big

if __name__ == '__main__':
    test=Solution()
    prices = [5,7,3,8] # 输入的每日股票数组
    test.maxProfit(prices)

分析:

这个代码理解起来简单 就是将所有可能都放入数组中 找出最大一个可能

将这个代码提交时 显示 超出时间限制 确实 如果输入的数组长度非常大时 计算量巨大 出现错误

——————————————————————————————————————————————————————————————————————————————

更换思路:利用贪心算法解决此事

首先介绍 一下贪心算法: 对问题只对当前情况进行最优解处理,之后发生什么对之前的决定都不改变。简单的说就是一个局部最优解的过程

介绍个例子就明白了: 找零钱问题

假设有面值为5元、2元、1元、5角、2角、1角的货币,需要找给顾客4元6角现金,为使付出的货币的数量最少

  •   首先找出小于4元6角的最大面值(2元)
  •   其次找出小于2元6角的最大面值(2元)
  •   接着找出小于6角的最大面值(5角)
  •   最后找出小于1角的最大面值(1角) ---付出4张纸币

介绍完了贪心算法简单思想 就利用该方法解决对应问题

在已知股票价格走势情况下 只需要对下一天进行判断 如果涨了 则买 如果跌了则卖 这样收益会保持固定增长

当然了 有人会提出 我可以选择不卖等几天再卖 或不买等几天再买 的方式 一样可以保持增长 但是如图

如果在第2天买入 3天卖出 4天买入 5天卖出 收益为A+B

如果在第2天买入 5天卖出 收益为 C

明显得出A+B大于C 所以贪心法在这种情况非常适用并且肯定得到最优解

直接上代码

class Solution(object):
  def maxProfit(self, prices):
    profit = 0
    for day in range(len(prices)-1):
      differ = prices[day+1] - prices[day]
      if differ > 0:
        profit += differ
    return profit
if __name__ == '__main__':
    test=Solution()
    prices = [5,7,3,9] # 输入的每日股票数组
    print(test.maxProfit(prices))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • 使用python批量修改XML文件中图像的depth值

    使用python批量修改XML文件中图像的depth值

    这篇文章主要介绍了使用python批量修改XML文件中图像的depth值,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-07-07
  • python中pass语句用法实例分析

    python中pass语句用法实例分析

    这篇文章主要介绍了python中pass语句用法,对比C++程序实例分析了pass语句的使用方法,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-04-04
  • Django路由层如何获取正确的url

    Django路由层如何获取正确的url

    本文介绍路由层是如何进行路由匹配的,以diango1.x版本为例,文中通过示例代码介绍的非常详细,文中通过示例代码介绍的非常详细,
    2021-07-07
  • 5分钟 Pipenv 上手指南

    5分钟 Pipenv 上手指南

    这篇文章主要介绍了5分钟 Pipenv 上手指南,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-12-12
  • Python time模块之时间戳与结构化时间的使用

    Python time模块之时间戳与结构化时间的使用

    这篇文章主要为大家详细介绍了Python中的time模块以及如何利用time模块实现时间戳与结构化时间,文中的示例代码讲解详细,需要的可以参考一下
    2022-06-06
  • Python pip 常用命令汇总

    Python pip 常用命令汇总

    这篇文章主要介绍了Python pip 常用命令汇总,帮助大家更好的理解和使用pip命令,感兴趣的朋友可以了解下
    2020-10-10
  • Python中类型检查的详细介绍

    Python中类型检查的详细介绍

    Python是一种非常动态的语言,函数定义中完全没有类型约束。下面这篇文章主要给大家详细介绍了Python中类型检查的相关资料,需要的朋友可以参考借鉴,下面来一起看看吧。
    2017-02-02
  • Python转换itertools.chain对象为数组的方法

    Python转换itertools.chain对象为数组的方法

    这篇文章主要介绍了Python转换itertools.chain对象为数组的方法,通过代码给大家介绍了itertools 的 chain() 方法,需要的朋友可以参考下
    2020-02-02
  • Python的信号库Blinker用法详解

    Python的信号库Blinker用法详解

    在本篇文章里小编给大家整理了一篇关于Python的信号库Blinker用法详解内容,有兴趣的朋友们可以学习下。
    2020-12-12
  • PyTorch平方根报错的处理方案

    PyTorch平方根报错的处理方案

    这篇文章主要介绍了PyTorch平方根报错的处理方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05

最新评论