python的几种矩阵相乘的公式详解
更新时间:2019年07月10日 10:59:52 作者:cltdevelop
这篇文章主要介绍了python的几种矩阵相乘的公式详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
1. 同线性代数中矩阵乘法的定义: np.dot()
np.dot(A, B):对于二维矩阵,计算真正意义上的矩阵乘积,同线性代数中矩阵乘法的定义。对于一维矩阵,计算两者的内积。见如下Python代码:
import numpy as np # 2-D array: 2 x 3 two_dim_matrix_one = np.array([[1, 2, 3], [4, 5, 6]]) # 2-D array: 3 x 2 two_dim_matrix_two = np.array([[1, 2], [3, 4], [5, 6]]) two_multi_res = np.dot(two_dim_matrix_one, two_dim_matrix_two) print('two_multi_res: %s' %(two_multi_res)) # 1-D array one_dim_vec_one = np.array([1, 2, 3]) one_dim_vec_two = np.array([4, 5, 6]) one_result_res = np.dot(one_dim_vec_one, one_dim_vec_two) print('one_result_res: %s' %(one_result_res))
结果如下:
two_multi_res: [[22 28] [49 64]] one_result_res: 32
2. 对应元素相乘 element-wise product: np.multiply(), 或 *
在Python中,实现对应元素相乘,有2种方式,一个是np.multiply(),另外一个是*。见如下Python代码:
import numpy as np # 2-D array: 2 x 3 two_dim_matrix_one = np.array([[1, 2, 3], [4, 5, 6]]) another_two_dim_matrix_one = np.array([[7, 8, 9], [4, 7, 1]]) # 对应元素相乘 element-wise product element_wise = two_dim_matrix_one * another_two_dim_matrix_one print('element wise product: %s' %(element_wise)) # 对应元素相乘 element-wise product element_wise_2 = np.multiply(two_dim_matrix_one, another_two_dim_matrix_one) print('element wise product: %s' % (element_wise_2))
结果如下:
element wise product: [[ 7 16 27] [16 35 6]] element wise product: [[ 7 16 27] [16 35 6]]
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
相关文章
解决python ThreadPoolExecutor 线程池中的异常捕获问题
这篇文章主要介绍了解决python ThreadPoolExecutor 线程池中的异常捕获问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2020-04-04Python Threading 线程/互斥锁/死锁/GIL锁
这篇文章主要介绍了Python Threading 线程/互斥锁/死锁/GIL锁的相关知识,本文给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下2019-07-07关于Qt6中QtMultimedia多媒体模块的重大改变分析
如果您一直在 Qt 5 中使用 Qt Multimedia,则需要对您的实现进行更改。这篇博文将尝试引导您完成最大的变化,同时查看 API 和内部结构2021-09-09
最新评论