新手如何发布Python项目开源包过程详解

 更新时间:2019年07月11日 09:39:48   作者:千锋Python唐唐君  
这篇文章主要介绍了新手如何发布Python项目开源包过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

本文假设你在 GitHub 上已经有一个想要打包和发布的项目。

第 0 步:获取项目许可证

在做其他事之前,由于你的项目要开源,因此应该有一个许可证。获取哪种许可证取决于项目包的使用方式。开源项目中一些常见许可证有 MIT 或 BSD。

要在项目中添加许可证,只需参照以下链接中的步骤,将 LICENSE 文件添加到项目库中的根目录即可:  https://help.github.com/en/articles/adding-a-license-to-a-repository

第 1 步:让你的代码准备就绪

要将项目进行打包,你需要做一些预备工作:

  • 让你的项目结构正确就位。通常情况下,项目库的根目录包含一个以项目名称命名的文件夹,项目的核心代码应该位于此文件夹中。在这个文件夹之外是运行和构建包(测试、文档等)所需的其他代码。
  • 核心文件夹应包括一个(或多个)模块和一个 __init__.py 文件,该文件包含你希望让终端用户访问的类/函数。此文件还可以包含包的版本,以便于终端用户访问。
  • 理想情况下,应使用 logging 包来设置合理的日志记录系统(而不是用 prints 输出)。
  • 理想情况下,应将你的核心代码分配到一个或多个类中。

from .estimate import Estimator

以__init__.py 为例,如果 Estimator 是终端用户将会访问的类(该类在 estimate.py 文件中定义)

import logging
class LogMixin(object):
 @property
 def logger(self):
 name = '.'.join([self.__module__, self.__class__.__name__])
 FORMAT = '%(name)s:%(levelname)s:%(message)s'
 logging.basicConfig(format=FORMAT, level=logging.DEBUG)
 logger = logging.getLogger(name)
 return logger

以日志系统为例:LogMixin 类可以在其他任何类中使用

第 2 步:使用打包工具创建 setup.py

在你的项目有了一套结构之后,你应该在项目库的根目录下添加 setup.py 文件。这有助于所有发布和版本维护过程的自动化。以下是 setup.py 的例子(源代码:https://github.com/nathan-toubiana/scitime/blob/master/setup.py)。

from setuptools import setup
from os import path
DIR = path.dirname(path.abspath(__file__))
INSTALL_PACKAGES = open(path.join(DIR, 'requirements.txt')).read().splitlines()
with open(path.join(DIR, 'README.md')) as f:
 README = f.read()
setup(
 name='scitime',
 packages=['scitime'],
 description="Training time estimator for scikit-learn algorithms",
 long_description=README,
 long_description_content_type='text/markdown',
 install_requires=INSTALL_PACKAGES,
 version='0.0.2',
 url='http://github.com/nathan-toubiana/scitime',
 author='Gabriel Lerner & Nathan Toubiana',
 author_email='toubiana.nathan@gmail.com',
 keywords=['machine-learning', 'scikit-learn', 'training-time'],
 tests_require=[
 'pytest',
 'pytest-cov',
 'pytest-sugar'
 ],
 package_data={
 # include json and pkl files
 '': ['*.json', 'models/*.pkl', 'models/*.json'],
 },
 include_package_data=True,
 python_requires='>=3'
)

setup.py 文件的示例

几点注意事项:

  • 如果你的包有依赖项,处理这些依赖项的简单方法是在配置文件中通过 install_requires 参数来添加依赖项(如果列表很长,你可以像之前那样指向一个 requirement.txt 文件)。
  • 如果你希望在任何人安装包时(从项目库中)下载元数据,则应通过 package_data 参数来添加这些元数据。
  • 有关 setup() 函数的更多信息,请参见:https://setuptools.readthedocs.io/en/latest/setuptools.html

注意:第 3 步到第 6 步是可选的(但强烈推荐),但是如果你现在马上想发布你的包,可以直接跳到第 7 步。

第 3 步:设置本地测试和检查测试覆盖率

此时还没有完成,你的项目还应该有单元测试。尽管有许多框架能帮助你做到,但一种简单的方法是使用 pytest。所有测试都应该放在一个专用的文件夹中(例如名为 tests/或 testing 的文件夹)。在这个文件夹中放置你需要的所有测试文件,以便尽可能多地包含你的核心代码。下面是一个如何编写单元测试的示例。这里还有一个 SciTime 的测试文件。

一旦就位,你就可以通过在项目库的根目录运行 python -m pytest 在本地进行测试。

创建测试后,你还应该能估算覆盖率。这一点很重要,因为你希望尽可能多地测试项目中的代码量(以减少意外的 bug)。

很多框架也可以用于计算覆盖率,对于 SciTime,我们使用了 codecov。你可以通过创建.codecov.yml 文件来决定允许的最小覆盖率阈值,还可以通过创建.coveragerc 文件来决定要在覆盖率分析中包含哪些文件。

comment: false
coverage:
 status:
 project:
 default:
 target: auto
 threshold: 10%
 patch:
 default:
 target: auto
 threshold: 10%

.codecov.yml 文件示例

[run]
branch = True
source = scitime
include = */scitime/*
omit =
 */_data.py
 */setup.py

coveragerc 文件示例

第 4 步:标准化语法和代码风格

你还需要确保你的代码遵循 PEP8 准则(即具有标准样式并且语法正确)。同样,有很多工具可以帮助你解决。这里我们用了 flake8。

第 5 步:创建一个合理的文档

现在你的项目已经测试过了,结构也很好了,是时候添加一个合理的文档。首先是要有一个好的 readme 文件,它会在你的 Github 项目库的根目录上显示。完成后,加上以下几点会更好:

由于 readme 文件应该相当综合,因此通常会有一个更详细的文档。你可以用 sphinx 来完成,然后在 readthedocs 上管理文档。与文档相关的文件通常放在 docs/文件夹中。sphinx 和 readthedocs 相关教程:

https://docs.readthedocs.io/en/stable/intro/getting-started-with-sphinx.html


包含标签和说明的项目库示例

第 6 步:创建持续集成

此时,你的项目离发布就绪不远了。但是,在每次提交之后,必须更新文档、运行测试以及检查样式和覆盖率似乎有点难以应付。幸运的是,持续集成(CI)可以帮助你完成。你可以在每次提交之后使用 GitHub 的 webhook 来自动执行所有的这些操作。以下是我们在 SciTime 中使用的一套 CI 工具:

  • 对于运行测试,我们使用了 travis ci 和 appveyor(用于 Windows 平台上的测试)。对于 Travis CI,除了在项目库上设置 webhook 之外,你还必须创建一个.travis.yml 文件,在该文件中,你不仅可以运行测试,还可以上传更新的覆盖率输出以及检查样式和格式。通过创建 appveyor.yml 文件,appveyor 也可以这样做。
  • codecov 和 readthdocs 也有专用的 webhook
language: python
python:
 - "3.6"
# command to install dependencies
install:
 - pip install -r requirements.txt
 - pip install flake8
 - pip install pytest-cov
 - pip install codecov
# command to run tests
script:
 - python -m pytest --cov=scitime
 - ./build_tools/flake_diff.sh
after_success:
 - codecov

.travis.yml 文件的示例:请注意,每次提交,测试都需要与检查测试覆盖率一起进行。但还有一个 flake8 检查(逻辑则在 flake_diff.sh 文件中定义:https://github.com/nathan-toubiana/scitime/blob/master/build_tools/flake_diff.sh)

environment:
 matrix:
 - PYTHON: "C:Python36-x64"
install:
 # We need wheel installed to build wheels
 - "%PYTHON%python.exe -m pip install -r requirements.txt"
 - "%PYTHON%python.exe -m pip install pytest==3.2.1"
build: off
test_script:
 - "%PYTHON%python.exe -m pytest"

appveyor.yml 文件示例:这里我们只运行测试

这将使更新项目库的整个过程更加容易。


集成 webhook 的提交历史记录示例

第 7 步:创建你的第一个 release 和 publication

此时,你即将发布的包应与以下类似:

your_package/
 __init__.py
 your_module.py
docs/
tests/
setup.py
travis.yml
appveyor.yml
.coveragerc
.codecov.yml
README.md
LICENSE
.github/
 CODE_OF_CONDUCT.md
 CONTRIBUTING.md
 PULL_REQUEST_TEMPLATE.md
 ISSUE_TEMPLATE/

现在可以发布了!首先要做的是在 GitHub 上创建你的第一个 release——这是为了在给定的时间点跟踪项目的状态,每次版本更改时都需要创建新的 release。

完成后,唯一要做的就是发布包。发布 python 包最常见的平台是 PyPI 和 Conda。以下我们将描述如何用两者发布:

  • 对于 PyPI,首先需要创建一个帐户,然后用 twine 执行一些步骤:https://realpython.com/pypi-publish-python-package/。这应该相当简单,而且 Pypi 还提供了一个可以在实际部署之前使用的测试环境。PyPI 总体上包括创建源代码(python setup.py sdist)并使用 twine(twine upload dist/*)来上传。完成后,应该有一个与你的包对应的 PyPI 页面,并且任何人都应该能够通过运行 pip 命令来安装你的包。
  • 对于 Conda,我们推荐通过 conda forge 来发布你的包,conda forge 是一个社区,帮助你通过 conda 渠道发布和维护包。你可以按照以下步骤将包添加到社区:https://conda-forge.org/#add_recipe,然后你会被添加到 conda forge Github 组织中,并能够非常轻松地维护你的包,然后任何人都可以通过运行 conda 命令来安装你的包。

完成!

现在,你的包应该已经发出去,并且任何人都可以使用了!虽然大部分工作都完成了,但是你仍然需要维护你的项目,你需要进行一些更新:这大体上意味着每次进行重大更改时都要更改版本,创建新的 release,并再次执行第 7 步。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • Django视图之ORM数据库查询操作API的实例

    Django视图之ORM数据库查询操作API的实例

    下面小编就为大家带来一篇Django视图之ORM数据库查询操作API的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-10-10
  • Python爬虫实战之使用Scrapy爬取豆瓣图片

    Python爬虫实战之使用Scrapy爬取豆瓣图片

    在用Python的urllib和BeautifulSoup写过了很多爬虫之后,本人决定尝试著名的Python爬虫框架——Scrapy.本次分享将详细讲述如何利用Scrapy来下载豆瓣名人图片,需要的朋友可以参考下
    2021-06-06
  • python如何快速拼接字符串

    python如何快速拼接字符串

    这篇文章主要介绍了python如何快速拼接字符串,帮助大家理解和学习python,感兴趣的朋友可以了解下
    2020-10-10
  • 解决pyqt中ui编译成窗体.py中文乱码的问题

    解决pyqt中ui编译成窗体.py中文乱码的问题

    下面小编就为大家带来一篇解决pyqt中ui编译成窗体.py中文乱码的问题。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2016-12-12
  • 详解Flask框架中Flask-Login模块的使用

    详解Flask框架中Flask-Login模块的使用

    Flask-Login 是一个 Flask 模块,可以为 Flask 应用程序提供用户登录功能。这篇文章将通过一些示例为大家介绍一下Flask-Login模块的使用,需要的可以参考一下
    2023-01-01
  • 从基础到高阶探索Python中的文件操作

    从基础到高阶探索Python中的文件操作

    文件操作在Python编程中是不可或缺的一部分,在本篇博客中,我们将全面、深入地探讨Python中的文件操作,感兴趣的小伙伴可以跟随小编一起学习学习
    2023-06-06
  • Python爬虫之超级鹰验证码应用

    Python爬虫之超级鹰验证码应用

    众所周知python是一个很强大的语言,它拥有众多的库,今天我尝试了使用超级鹰第三方平台进行验证码的开发,需要的朋友可以参考下
    2022-08-08
  • 基于python实现高速视频传输程序

    基于python实现高速视频传输程序

    这篇文章主要介绍了基于python实现高速视频传输程序的实例代码,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-05-05
  • Python简单实现词云图代码及步骤解析

    Python简单实现词云图代码及步骤解析

    这篇文章主要介绍了Python简单实现词云图代码解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-06-06
  • 39条Python语句实现数字华容道

    39条Python语句实现数字华容道

    这篇文章主要为大家详细介绍了39条Python语句实现数字华容道,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-04-04

最新评论