基于sklearn实现Bagging算法(python)
更新时间:2021年06月16日 15:39:36 作者:little_yan_yan
这篇文章主要为大家详细介绍了基于sklearn实现Bagging算法,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
本文使用的数据类型是数值型,每一个样本6个特征表示,所用的数据如图所示:
图中A,B,C,D,E,F列表示六个特征,G表示样本标签。每一行数据即为一个样本的六个特征和标签。
实现Bagging算法的代码如下:
from sklearn.ensemble import BaggingClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.preprocessing import StandardScaler import csv from sklearn.cross_validation import train_test_split from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report data=[] traffic_feature=[] traffic_target=[] csv_file = csv.reader(open('packSize_all.csv')) for content in csv_file: content=list(map(float,content)) if len(content)!=0: data.append(content) traffic_feature.append(content[0:6])//存放数据集的特征 traffic_target.append(content[-1])//存放数据集的标签 print('data=',data) print('traffic_feature=',traffic_feature) print('traffic_target=',traffic_target) scaler = StandardScaler() # 标准化转换 scaler.fit(traffic_feature) # 训练标准化对象 traffic_feature= scaler.transform(traffic_feature) # 转换数据集 feature_train, feature_test, target_train, target_test = train_test_split(traffic_feature, traffic_target, test_size=0.3,random_state=0) tree=DecisionTreeClassifier(criterion='entropy', max_depth=None) # n_estimators=500:生成500个决策树 clf = BaggingClassifier(base_estimator=tree, n_estimators=500, max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False, n_jobs=1, random_state=1) clf.fit(feature_train,target_train) predict_results=clf.predict(feature_test) print(accuracy_score(predict_results, target_test)) conf_mat = confusion_matrix(target_test, predict_results) print(conf_mat) print(classification_report(target_test, predict_results))
运行结果如图所示:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
相关文章
python 解析XML python模块xml.dom解析xml实例代码
这篇文章主要介绍了分享下python中使用模块xml.dom解析xml文件的实例代码,学习下python解析xml文件的方法,有需要的朋友参考下2014-02-02Python中read,readline和readlines的区别案例详解
这篇文章主要介绍了Python中read,readline和readlines的区别案例详解,本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下2021-09-09
最新评论