使用Netty搭建服务端和客户端过程详解
前言
前面我们介绍了网络一些基本的概念,虽然说这些很难吧,但是至少要做到理解吧。有了之前的基础,我们来正式揭开Netty这神秘的面纱就会简单很多。
服务端
public class PrintServer { public void bind(int port) throws Exception { EventLoopGroup bossGroup = new NioEventLoopGroup(); //1 EventLoopGroup workerGroup = new NioEventLoopGroup(); //2 try { ServerBootstrap b = new ServerBootstrap(); //3 b.group(bossGroup, workerGroup) //4 .channel(NioServerSocketChannel.class) //5 .option(ChannelOption.SO_BACKLOG, 1024) //6 .childHandler(new ChannelInitializer<SocketChannel>() { //7 @Override protected void initChannel(SocketChannel ch) throws Exception { ch.pipeline().addLast(new PrintServerHandler()); } }); ChannelFuture f = b.bind(port).sync(); //8 f.channel().closeFuture().sync(); //9 } finally { // 优雅退出,释放线程池资源 bossGroup.shutdownGracefully(); workerGroup.shutdownGracefully(); } } /** * @param args * @throws Exception */ public static void main(String[] args) throws Exception { int port = 8080; new TimeServer().bind(port); } }
我们来分析一下上面的这段代码(下面的每一点对应上面的注释)
1~2:首先我们创建了两个NioEventLoopGroup实例,它是一个由Netty封装好的包含NIO的线程组。为什么创建两个?我想经过前面的学习大家应该都清楚了。对,因为Netty的底层是IO多路复用,bossGroup 是用于接收客户端的连接,原理就是一个实现的Selector的Reactor线程。而workerGroup用于进行SocketChannel的网络读写。
3:创建一个ServerBootstrap对象,可以把它想象成Netty的入口,通过这类来启动Netty,将所需要的参数传递到该类当中,大大降低了的开发难度。
4:将两个NioEventLoopGroup实例绑定到ServerBootstrap对象中。
5:创建Channel(典型的channel有NioSocketChannel,NioServerSocketChannel,OioSocketChannel,OioServerSocketChannel,EpollSocketChannel,EpollServerSocketChannel),这里创建的是NIOserverSocketChannel,它的功能可以理解为当接受到客户端的连接请求的时候,完成TCP三次握手,TCP物理链路建立成功。并将该“通道”与workerGroup线程组的某个线程相关联。
6:设置参数,这里设置的SO_BACKLOG,意思是客户端连接等待队列的长度为1024.
7:建立连接后的具体Handler。就是我们接受数据后的具体操作,例如:记录日志,对信息解码编码等。
8:绑定端口,同步等待成功
9:等待服务端监听端口关闭
绑定该服务端的Handler
public class PrintServerHandler extends ChannelHandlerAdapter { @Override public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception { ByteBuf buf = (ByteBuf) msg; //1 byte[] req = new byte[buf.readableBytes()]; buf.readBytes(req); //将缓存区的字节数组复制到新建的req数组中 String body = new String(req, "UTF-8"); System.out.println(body); String response= "打印成功"; ByteBuf resp = Unpooled.copiedBuffer(response.getBytes()); ctx.write(resp); //2 } @Override public void channelReadComplete(ChannelHandlerContext ctx) throws Exception { ctx.flush(); //3 } @Override public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) { ctx.close(); } }
PrintServerHandler 继承 ChannelHandlerAdapter ,在这里它的功能为 打印客户端发来的数据并且返回客户端打印成功。
我们只需要实现channelRead,exceptionCaught,前一个为接受消息具体逻辑的实现,后一个为发生异常后的具体逻辑实现。
1:我们可以看到,接受的消息被封装为了Object ,我们将其转换为ByteBuf ,前一章的讲解中也说明了该类的作用。我们需要读取的数据就在该缓存类中。
2~3:我们将写好的数据封装到ByteBuf中,然后通过write方法写回到客户端,这里的3调用flush方法的作用为,防止频繁的发送数据,write方法并不直接将数据写入SocketChannel中,而是把待发送的数据放到发送缓存数组中,再调用flush方法发送数据。
客户端
public class PrintClient { public void connect(int port, String host) throws Exception { EventLoopGroup group = new NioEventLoopGroup(); //1 try { Bootstrap b = new Bootstrap(); //2 b.group(group) //3 .channel(NioSocketChannel.class) //4 .option(ChannelOption.TCP_NODELAY, true) //5 .handler(new ChannelInitializer<SocketChannel>() { //6 @Override public void initChannel(SocketChannel ch) throws Exception { ch.pipeline().addLast(new PrintClientHandler()); } }); ChannelFuture f = b.connect(host, port).sync(); //7 f.channel().closeFuture().sync(); //8 } finally { // 优雅退出,释放NIO线程组 group.shutdownGracefully(); } } /** * @param args * @throws Exception */ public static void main(String[] args) throws Exception { int port = 8080; new TimeClient().connect(port, "127.0.0.1"); } }
我们继续来分析一下上面的这段代码(下面的每一点对应上面的注释)
1:区别于服务端,我们在客户端只创建了一个NioEventLoopGroup实例,因为客户端你并不需要使用I/O多路复用模型,需要有一个Reactor来接受请求。只需要单纯的读写数据即可
2:区别于服务端,我们在客户端只需要创建一个Bootstrap对象,它是客户端辅助启动类,功能类似于ServerBootstrap。
3:将NioEventLoopGroup实例绑定到Bootstrap对象中。
4:创建Channel(典型的channel有NioSocketChannel,NioServerSocketChannel,OioSocketChannel,OioServerSocketChannel,EpollSocketChannel,EpollServerSocketChannel),区别与服务端,这里创建的是NIOSocketChannel.
5:设置参数,这里设置的TCP_NODELAY为true,意思是关闭延迟发送,一有消息就立即发送,默认为false。
6:建立连接后的具体Handler。注意这里区别与服务端,使用的是handler()而不是childHandler()。handler和childHandler的区别在于,handler是接受或发送之前的执行器;childHandler为建立连接之后的执行器。
7:发起异步连接操作
8:当代客户端链路关闭
绑定该客户端的Handler
public class PrintClientHandler extends ChannelHandlerAdapter { private static final Logger logger = Logger .getLogger(TimeClientHandler.class.getName()); private final ByteBuf firstMessage; /** * Creates a client-side handler. */ public TimeClientHandler() { byte[] req = "你好服务端".getBytes(); firstMessage = Unpooled.buffer(req.length); //1 firstMessage.writeBytes(req); } @Override public void channelActive(ChannelHandlerContext ctx) { ctx.writeAndFlush(firstMessage); //2 } @Override public void channelRead(ChannelHandlerContext ctx, Object msg) //3 throws Exception { ByteBuf buf = (ByteBuf) msg; byte[] req = new byte[buf.readableBytes()]; buf.readBytes(req); String body = new String(req, "UTF-8"); System.out.println("服务端回应消息 : " + body); } @Override public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) { //4 // 释放资源 System.out.println("Unexpected exception from downstream : " + cause.getMessage()); ctx.close(); } }
PrintClientHandler 继承 ChannelHandlerAdapter ,在这里它的功能为 发送数据并打印服务端发来的数据。
我们只需要实现channelActive,channelRead,exceptionCaught,第一个为建立连接后立即执行,后两个与一个为接受消息具体逻辑的实现,另一个为发生异常后的具体逻辑实现。
1:将发送的信息封装到ByteBuf中。
2:发送消息。
3:接受客户端的消息并打印
4:发生异常时,打印异常信息,释放客户端资源
总结
这是一个入门程序,对应前面所讲的I/O多路复用模型以及NIO的特性,能很有效的理解该模式的编程方式。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
相关文章
Spring事件监听器ApplicationListener源码详解
这篇文章主要介绍了Spring事件监听器ApplicationListener源码详解,ApplicationEvent以及Listener是Spring为我们提供的一个事件监听、订阅的实现,内部实现原理是观察者设计模式,需要的朋友可以参考下2023-05-05Java 添加、删除、格式化Word中的图片步骤详解( 基于Spire.Cloud.SDK for Java )
这篇文章主要介绍了Java 添加、删除、格式化Word中的图片( 基于Spire.Cloud.SDK for Java ),本文分步骤通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下2020-08-08
最新评论