用Python+OpenCV对比图像质量的几种方法

 更新时间:2019年07月15日 15:53:53   作者:Jeru_d39e  
这篇文章主要介绍了用Python+OpenCV对比图像质量过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

前言

图片的本质就是大量像素在二维平面上的组合,每个像素点用数字化方式记录颜色。可以直观的想象,一张图片就是一个巨大的电子栅格,每个格子内有一盏灯泡,这个灯泡可以变换256的三次方种颜色,就像下面这张卡通像素图一样,越清晰的图片像素越密集。

这一次来看看OpenCV提供的两种图像质量对比方式(PSNR & SSIM)及其扩展, 这篇文章会涉及到一点数学公式,顺便介绍一个我用过的生成公式的最佳在线编辑工具,秒杀所有收费工具。

链接在这里, 请收好: https://www.mathcha.io/editor

1. MSE对比

均方差 MSE(Mean Squared Error)对比, 思路是对两张尺寸完全相同的图片一个个像素进行对比,对比的数值就是颜色。注意下面公式有两个维度,因为我们对比的图像是像素矩阵,m and n 代表行数和列数。

MSE formula

MSE公式自己用numpy写几行代码实现,这里唯一要注意的是我找的图片是彩色的,因为有BGR3个颜色通道所以MSE要除以3得到平均值。

有了核心逻辑后准备一下素材 - 著名的经典图片Lena,再手工压缩75%, 90%, 95%放置入lena folder. Lena是1972年12月花花公子的封面女郎,这张照片只是裸体插页的1/3,下面少儿不宜部分被截断了,未删节原图在卡耐基梅隆大学的网页上还能找到(Warning: contains nudity)。

至于为什么选取她的照片,据说这张图片包含了各种细节,平滑区域,阴影和纹理,是完美的测试图像。其实都是扯淡,主要因为她当年是个迷人的美女,深受老一代美国码农欢迎。

2. PSNR对比

PSNR (Peak Signal to Noise Ratio)是最广泛使用的一种图像客观评价指标,通常用来评价一副图像压缩后与原图对比质量的好坏,这个值大概在30dB到50dB之间,PSNR值越高则压缩后失真越小,如果差异非常明显可能会得到15甚至更低的值。

所以MSE或者PSNR也好主要是对比完全一样但是压缩重构的图片,OpenCV官方文档说这也是逐帧比较视频差异的最常用方式,毕竟它简单,运行速度快。

但其呈现的差异有时候与人的主观感受不一致,所以OpenCV还提供了结构相似性算法SSIM做出改进。下面是PSNR公式,也是在MSE基础上的进一步扩展,这里MAX表示图像颜色最大值,8bit图像取值为255

3. SSIM对比

自然图像具备高度结构性,临近的像素间存在强相关性。

SSIM考虑了人眼的生物特征,是基于感知的计算模型,人类视觉系统就是从可视区域内获取结构信息,所以我们也可以检测结构信息的差异来对比图片,这和MSE或者PSNR通过线性变换来分解信号有本质上的不同。

SSIM的测量体系由三个模块组成: 亮度,对比度和结构。

三个模块的对比函数组合之后得到SSIM的公式如下:

下面是完整代码实现把三种score都打印出来看看,三种评测函数都直接改用了scikit-image库提供的现成方法,实验过结果和前面的实现是一样的。SSIM的score范围从-1到1,1表示和原图完全一致。

下面继续用SSIM来玩玩找不同游戏看看,我在网上找了两张图片,第一张是原图,第二张是PS后有N处差异,看看如何用SSIM快速找出答案。

原图

修改图

新开一个文件来实现逻辑:首先载入文件并转成grayscale, 并计算出SSIM; 核心逻辑在于line 22通过OSTU找出自适应阈值,line 23行根据这个阈值来提取轮廓,最后画方框出来。

对比结果,一秒找出八处不同

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python中如何让输出不换行

    python中如何让输出不换行

    这篇文章主要介绍了python中如何让输出不换行问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-05-05
  • python如何使用Redis构建分布式锁

    python如何使用Redis构建分布式锁

    这篇文章主要介绍了python如何使用Redis构建分布式锁,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-01-01
  • 谨慎使用Python进行矩阵计算解析

    谨慎使用Python进行矩阵计算解析

    这篇文章主要介绍了使用Python进行矩阵计算原理解析,真正的单位矩阵,只有对角线元素为1,其他元素为0,用 np.identity(N) 生成单位矩阵,需要的朋友可以参考下
    2023-08-08
  • 图邻接矩阵可视化解析

    图邻接矩阵可视化解析

    这篇文章主要介绍了基于图邻接矩阵可视化解析,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-12-12
  • python遗传算法之单/多目标规划问题

    python遗传算法之单/多目标规划问题

    本文主要介绍了python遗传算法之单/多目标规划问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-04-04
  • python使用正则表达式(Regular Expression)方法超详细

    python使用正则表达式(Regular Expression)方法超详细

    这篇文章主要介绍了python使用正则表达式(Regular Expression)方法超详细,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-12-12
  • django 单表操作实例详解

    django 单表操作实例详解

    这篇文章主要介绍了django 单表操作实例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07
  • Python 带你快速上手 Apache APISIX 插件开发

    Python 带你快速上手 Apache APISIX 插件开发

    Apache APISIX Python Runner 来了,社区中的小伙伴们在开发 Apache APISIX 插件时又多了一种新选择,本文将用实列向大家介绍,需要的朋友可以参考下面文章内容
    2021-09-09
  • Python3实现旋转数组的3种算法小结

    Python3实现旋转数组的3种算法小结

    旋转数组是一种常见的数据结构问题,通常是指一个有序数组经过旋转后,使得所有元素逆序排列,本文主要介绍了Python3实现旋转数组的3种算法小结,感兴趣的可以了解一下
    2023-12-12
  • PyQt5每天必学之创建窗口居中效果

    PyQt5每天必学之创建窗口居中效果

    这篇文章主要介绍了PyQt5每天必学之创建窗口居中效果,使应用程序窗口显示在屏幕的中心,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-04-04

最新评论