Pandas中DataFrame的分组/分割/合并的实现

 更新时间:2019年07月16日 14:50:44   作者:刘知昊  
这篇文章主要介绍了Pandas中DataFrame的分组/分割/合并的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

学习《Python3爬虫、数据清洗与可视化实战》时自己的一些实践。

DataFrame分组操作

注意分组后得到的就是Series对象了,而不再是DataFrame对象。

import pandas as pd

# 还是读取这份文件
df = pd.read_csv("E:/Data/practice/taobao_data.csv", delimiter=',', encoding='utf-8', header=0)

# 计算'成交量'按'位置'分组的平均值
grouped1 = df['成交量'].groupby(df['位置']).mean()
# print(grouped1)

在这里插入图片描述

# 计算'成交量'先按'位置'再按'卖家'分组后的平均值
grouped2 = df['成交量'].groupby([df['位置'], df['卖家']]).mean()
# print(grouped2)

在这里插入图片描述

# 计算先按'位置'再按'卖家'分组后的所有指标(如果可以计算平均值)的平均值
grouped3 = df.groupby([df['位置'], df['卖家']]).mean()
# print(grouped3)

在这里插入图片描述

DataFrame数据分割和合并

这里其实可以操作得很复杂,这里是一些比较基本的用法。

import pandas as pd

# 还是读取这份文件
df = pd.read_csv("E:/Data/practice/taobao_data.csv", delimiter=',', encoding='utf-8', header=0)
# 计算销售额
df['销售额'] = df['价格'] * df['成交量']

# (1)前面学了ix,loc,iloc,这里是直接用[]运算做分割
df1 = df[30:40][['位置', '卖家']]
# print(df1) # 从30号行到39号行
df2 = df[80:90][['卖家', '销售额']]

在这里插入图片描述

# (2)内联接操作(相当于JOIN,INNER JOIN)
df3 = pd.merge(df1, df2) # 不指定列名,默认选择列名相同的'卖家'列
# print(df3)
df4 = pd.merge(df1, df2, on='卖家') # 指定按照'卖家'相同做联接
# print(df4)

在这里插入图片描述

# (3)全外联接操作(相当于FULL JOIN),没有值的补NaN
df5 = pd.merge(df1, df2, how='outer')
# print(df5)

在这里插入图片描述

# (4)左外联接操作(相当于LEFT JOIN),即左边的都要,'销售额'没有就NaN
df6 = pd.merge(df1, df2, how='left')
# print(df6)

在这里插入图片描述

# (5)右外联接操作(相当于RIGHT JOIN),即右边的都要,'位置'没有就NaN
df7 = pd.merge(df1, df2, how='right')
# print(df7)

在这里插入图片描述

# (6)按索引相同做联接
df_a = df[:10][['位置', '卖家']]
df_b = df[3:13][['价格', '成交量']]
df_c_1 = pd.merge(df_a, df_b, left_index=True, right_index=True) # 内联接
# print(df_c_1) # 只有从3到9的

在这里插入图片描述

df_c_2 = df_a.join(df_b) # 左外联接
# print(df_c_2) # 从0到10

在这里插入图片描述

df_c_3 = df_b.join(df_a) # "右"外联接(其实还是左外联接,就是b在左边a在右边)
# print(df_c_3) # 从3到12

在这里插入图片描述

# (7)轴向堆叠操作(上下堆叠时就相当于UNION ALL,默认不去重)
df8 = df[2:5][['价格']] # 注意这里只取一个列也要用[[]]
df9 = df[3:8][['销售额', '宝贝']]
df10 = df[6:11][['卖家', '位置']]
# (7.1)默认axis=0即上下堆叠,上下堆叠时,堆叠顺序和传进concat的顺序一致,最终列=所有列数去重,缺失的补NaN
# 关于axis=0需要设置sort属性的问题,还没查到有讲这个的,这个问题先留着...
df11 = pd.concat([df10, df9, df8], sort=False)
# print(df11)

在这里插入图片描述

# (7.2)设置axis=1即左右堆叠,左右堆叠不允许索引重复,相同索引的将被合并到一行
# 左右堆叠中,堆叠顺序仅仅影响列的出现顺序
# 这很好理解,毕竟不是从上到下"摞"在一起的,而是从左到右"卡"在一起的
df12 = pd.concat([df10, df9, df8], axis=1)
df13 = pd.concat([df8, df9, df10], axis=1)
# print(df12)
# print(df13)

在这里插入图片描述

在这里插入图片描述

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • Python for循环生成列表的实例

    Python for循环生成列表的实例

    今天小编就为大家分享一篇Python for循环生成列表的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-06-06
  • 利用Python提取图片经纬度并锁定拍照地点

    利用Python提取图片经纬度并锁定拍照地点

    每张照片的属性中都会有一个经纬度信息,本文将利用Python实现提取图片的经纬度,并锁定拍照的低点,感兴趣的小伙伴可以跟随小编一起动手试一试
    2022-02-02
  • python计算日期之间的放假日期

    python计算日期之间的放假日期

    这篇文章主要为大家详细介绍了python计算日期之间的放假日期,实现自动查询节日,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-06-06
  • Python 语法错误:"SyntaxError: invalid character in identifier"原因及解决方法

    Python 语法错误:"SyntaxError: invalid charac

    本文给大家分享Python 语法错误:“SyntaxError: invalid character in identifier“,原因及解决方法,文末给大家补充介绍了Python出现SyntaxError: invalid syntax的原因总结,感兴趣的朋友跟随小编一起学习吧
    2023-02-02
  • ​cmd输入python打开微软应用商店的解决方法

    ​cmd输入python打开微软应用商店的解决方法

    在命令控制行中输入python想使用Python环境,却意外打开了微软自带的应用商店,十分苦恼,下面这篇文章主要给大家介绍了关于​cmd输入python打开微软应用商店的解决方法,需要的朋友可以参考下
    2024-03-03
  • python 如何执行控制台命令与操作剪切板

    python 如何执行控制台命令与操作剪切板

    这篇文章主要介绍了python 如何执行控制台命令与操作剪切板,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • Python中seaborn库之countplot的数据可视化使用

    Python中seaborn库之countplot的数据可视化使用

    在Python数据可视化中,seaborn较好的提供了图形的一些可视化功效。本文详细的介绍了Python中seaborn库之countplot的数据可视化使用,感兴趣的可以了解一下
    2021-06-06
  • python scp 批量同步文件的实现方法

    python scp 批量同步文件的实现方法

    今天小编就为大家分享一篇python scp 批量同步文件的实现方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • Python 设计模式行为型解释器模式

    Python 设计模式行为型解释器模式

    本文介绍了Python解释器模式,解释器模式即Interpreter Pattern,给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子,下面文章进入更深层学习,需要的小伙伴可以参考一下
    2022-02-02
  • matplotlib quiver箭图绘制案例

    matplotlib quiver箭图绘制案例

    这篇文章主要介绍了matplotlib quiver箭图绘制案例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04

最新评论