简单了解django索引的相关知识

 更新时间:2019年07月17日 15:17:53   作者:喝完这杯还有一箱  
这篇文章主要介绍了简单了解django索引的相关知识,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

前言

由于数据库每天都用来存储越来越多的信息,因此这些也是每个Django项目中的关键组件。 因此了解它们的工作方式非常重要。

当然,我无法解释所有可用于Django的不同数据库的全部细节。 不仅如此,因为我不知道这一切,但也因为这会造成一场谈话。 或者可能是整个会议。

关于数据库的理论背景我唯一想说的是,有一种叫做“关系代数”的东西。 用你可能想出的每 一条SELECT语句都可以表达出来。 数学证明。

数据库查找如何工作

相反,让我们从数据库查找的工作方式开始。 因为那是我们最多的时间。

假设我们有这个数据库的人名表及其相应的年龄,当他们开始编程时。

现在我们要选择每个19岁开始的人。

我们可以用SQL查询来表达:

SELECT * FROM people WHERE age = 19

现在,我们如何找到每个人匹配该查询?

表扫描查找

那么,这很容易。 我们只查看表中的每一行,检查条件是否适用,如果是,则返回该行。

这被称为“全表扫描”

到现在为止还挺好。 我们在这里有7排。 因此我们看7行。 这是少量的行,所以查询速度很快。

但是想象一下,你有10万,1亿,100亿甚至更多的行。 遍历每一行可能非常耗时。 这不是我们想要的或我们可以负担得起的东西。 我们希望能够提供有保证的时机来查找特定行。 与行数无关。

这是索引加入派对的地方。

什么是索引?

对于数量不断增加的数据,索引可以快速访问单个(或多个)项目,而不会减少很多速度。 这也被称为“随机访问”。 你会看到为什么这样叫。 但首先让我们看看现代数据库系统中最常见的索引类型。

B-Trees / B +树

目前最常见的索引是B-Tree索引。 或者更确切地说,B +树索引。

它们或者以其发明者之一Rudolf Bayer命名,或者因为他们自我平衡。 这不是很清楚,但也并不重要。 自我平衡意味着树木有一定的时间保证:对于B树最有意思的是,索引的大小并不重要,对于任何相同大小的索引,时间将是相同的。 你也会看到这一点。

就像所有的树(无论是在计算机科学还是在自然界中),你都以一个根开始。 计算机科学与自然的区别在于,在计算机科学中,我们把树的根部放在顶部。

随你。 这是3级B +树的根音。

等级3意味着,这个节点可以有3个键。 这就是该节点顶部的3个盒子的用途。 下面的4个盒子保存指向另一个节点的指针或数据库表中的一行。

现在,假设您在此节点中具有密钥11和37,并且您没有第三个密钥。

然后最左边的指针指向一个节点的键小于11.第二个指针指向一个节点,其键大于或等于11,小于37.第三个指针指向一个键大于或等于37的节点。

从我在开始时显示的表格的年龄栏索引中,可以看起来像这样。

现在的魔法就是第二行节点中的指针。 它们中的每一个指向表中具有特定键的单个行,在我们的示例中,这是年龄。

但不只是这个。

您会看到每个底层节点中的最后一个指针如何指向下一个节点? 这用于“索引扫描”。 我会在稍后回来。

我们来更详细地看看第二排节点。

您现在可以看到,来自其中一个树节点的每个指针如何指向表中的单个行。

您还可以看到来自树节点的这些指针如何随机地指向表中的某些行。 这就是为什么这被称为“随机访问”。 数据库随机在数据库表中跳转。

随机访问查找

让我们用我们之前的SQL查询刷新我们的记忆。

SELECT * FROM people WHERE age = 19

现在索引如何帮助更快找到相应的行?

那么,让我们看看树:

它需要1步从第一个节点到第二个节点。 并且从第二个节点到数据库表中的行一秒钟。

请记住,我们必须查看所有7行以查看它们是否与数据库查询匹配。

而且由于19个指数中没有更多的关键,我们就完成了。

索引扫描

现在,回到“索引扫描”,假设你想要计算从5岁到13岁时开始编码的人数。

SELECT COUNT(*) FROM people WHERE age BETWEEN 5 AND 19;
SELECT COUNT(*) FROM people WHERE age >= 5 AND age <= 19;

数据库将查找密钥5,然后使用指向下一个节点的指针查找更多密钥。

而且因为数据库所需的所有查询信息都在索引中,所以数据库根本不会查看表。

索引非常棒

让我们让他们在Django。

实际上,我们已经做到了。

  • db_index = True ,您可以在模型字段上设置
  • index_together =(('name', 'age'),)你可以在模型的Meta类中设置
  • ForeignKey() / OneToOneField()使用索引快速查找相关表中的数据
  • primary_key = True ,Django自动使用AutoField表示每个模型上的id列。

这已经很棒了。 但是这个功能集有点限制。 那里不仅有B +树索引。 还有一吨多

2016

我们来看看2016年。

马克·坦林和我有索引的想法。 实际上,Marc在他的contrib.postgres工作中已经有了一些想法。 我们有关于API的想法。 我们希望在Django中拥有的东西。 像,让我们让Django支持所有的索引 。

但是我们没有时间去实现我们的想法!

但我们很幸运。 事实上,Django项目很幸运。

Google Summer of Code 2016

Django再次被接受为Google Summer of Code的组织。 谢谢Google!

对于那些不知道这是什么的人:谷歌支付学生3个月的时间在开源项目上工作,同时由项目贡献者进行指导。

大多数情况下, Tim Graham ,还有Marc和我辅导学生Akshesh Doshi在Django中处理更通用的索引支持。 从写下API等提议,直到最终合并到Django中。

GSoC 2016的主要成果是django.db.models.indexes.Index(fields,name) ( docs )

它定义了所有索引的基类。 您可以通过模型的Meta类中的索引选项使用它们。

例如像这样:

from django.db import models

class Person(models.Model):
 name = models.CharField(max_length=200)

 class Meta:
  indexes = [
   models.Index(
    fields=['name'],
    name='name_idx',
   ),
  ]

这将在数​​据库表的名称列上创建一个B +树索引。

当然,这并不是什么新鲜事。 这就是在名称字段中使用db_index = True时可以执行的操作。

您当然也可以在多列上定义索引:

from django.db import models

class Person(models.Model):
 name = models.CharField(max_length=200)
 age = models.PositiveSmallIntegerField()

 class Meta:
  indexes = [
   models.Index(
    fields=['name', 'age'],
    name='name_age_idx',
   ),
  ]

当然,这也不是什么新东西。 你可以用index_together来完成。

但你现在也可以这样做:

from django.contrib.postgres.fields import JSONField
from django.contrib.postgres.indexes import GinIndex
from django.db import models

class Doc(models.Model):
 data = JSONField()

 class Meta:
  indexes = [
   GinIndex(
    fields=['data'],
    name='data_gin',
   ),
  ]

定义一个GinIndex 。 这是PostgreSQL特有的。 但这是你以前无法做到的事情。 至少不可靠,没有太多的痛苦。

GinIndex可用于索引JSON blob中的键值。 因此,您可以筛选表中JSONB字段中的键映射到特定值的表中的行。 这就像“NoSQL 1-0-1”。

Django 1.11附带的另一种内置索引类型是BrinIndex ,简单地说,它可以允许更快地计算聚合。 比如,找出每篇文章最后一次购买的时间。

而且由于索引是数据库模式的一部分,显然通过迁移来追踪索引。 因此,当您运行python manage.py migrate时会创建索引:

BEGIN;
--
-- Create model Doc
--
CREATE TABLE "someapp_doc" (
 "id" serial NOT NULL PRIMARY KEY,
 "data" jsonb NOT NULL);
--
-- Create index data_gin on field(s) data of model doc
--
CREATE INDEX "data_gin" ON "someapp_doc" USING gin ("data");
COMMIT;

特色创意

大。

这就是昨天发布的Django 1.11。

但是Django 2.0有什么用?

什么在地平线上?

我们最终想要什么?

功能索引

它们在各种情况下都很有用,在这种情况下,您不希望对原始值进行索引,但可以对其进行变化,例如字符串的小写。 我已经在为此工作。 我还没到。 我很想从理解表达式API的人那里获得帮助。

from django.db import models

class Author(models.Model):
 name = models.CharField(max_length=200)

 class Meta:
  indexes = [
   FuncIndex(
    expression=Lower('name'),
    name='name_lower_idx',
   ),
  ]

db_index = <IndexClass>

如前所述,对单个列使用索引可能非常麻烦。 因此,让我们支持Index类作为db_index的一个属性。

from django.db import models

class Author(models.Model):
 name = models.CharField(
  max_length=200,
  db_index=HashIndex
 )

对某些领域有一个B +树是没有意义的。 如前所示, GinIndex对于JSONField来说非常完美。 为什么不在db_index = True时使用每个字段类的default_index_class ?

from django.contrib.postgres.fields import JSONField
from django.contrib.postgres.indexes import GinIndex
from django.db import models

# Somewhere in Django's JSONField implementation:
# JSONField.default_index_class = GinIndex

class Document(models.Model):
 data = JSONField(db_index=True)

重构index_together和db_index

这个比面向用户更引人注目:

我可以想象, db_index和index_together在内部使用Model._meta.indexes可能是有意义的。 这是要调查的东西。

GiSTIndex

PostgreSQL中有一个GiSTIndex ,可用于地理空间查询,例如“给我所有与给定点最大距离为10的点”。 这不是在Django 1.11中。 我不知道为什么,但我猜是因为没有人添加它。

请注意,Django 2.0不再支持Python 2了!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

最新评论