python傅里叶变换FFT绘制频谱图

 更新时间:2019年07月19日 10:38:25   作者:蜘蛛侠不会飞  
这篇文章主要为大家详细介绍了python傅里叶变换FFT绘制频谱图,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文实例为大家分享了python傅里叶变换FFT绘制频谱图的具体代码,供大家参考,具体内容如下

频谱图的横轴表示的是 频率, 纵轴表示的是振幅

#coding=gbk
 
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
 
#依据快速傅里叶算法得到信号的频域
def test_fft():
 sampling_rate = 8000 #采样率
 fft_size = 8000  #FFT长度
 t = np.arange(0, 1.0, 1.0/sampling_rate)
 x = np.sin(2*np.pi*156.25*t) + 2*np.sin(2*np.pi*234.375*t)+ 3*np.sin(2*np.pi*200*t)
 xs = x[:fft_size]
 
 xf = np.fft.rfft(xs) / fft_size #返回fft_size/2+1 个频率
 
 freqs = np.linspace(0, sampling_rate/2, fft_size/2+1) #表示频率
 xfp = np.abs(xf) * 2 #代表信号的幅值,即振幅
 
 plt.figure(num='original', figsize=(15, 6))
 plt.plot(x[:100])
 
 plt.figure(figsize=(8,4))
 plt.subplot(211)
 plt.plot(t[:fft_size], xs)
 plt.xlabel(u"时间(秒)", fontproperties='FangSong')
 plt.title(u"156.25Hz和234.375Hz的波形和频谱", fontproperties='FangSong')
 
 plt.subplot(212)
 plt.plot(freqs, xfp)
 plt.xlabel(u"频率(Hz)", fontproperties='FangSong')
 plt.ylabel(u'幅值', fontproperties='FangSong')
 plt.subplots_adjust(hspace=0.4)
 plt.show()
 
test_fft()
# np.clip(a, a_min, a_max, out) 输出与a 的shape一样,大于等于a_min,小于等于a_max的数,即在 [a_min, a_max]之间的数
a = np.arange(10)
print(a)
print(a.shape)
# [0 1 2 3 4 5 6 7 8 9]
b = np.empty((10,))
np.clip(a, 3, 8, out=b)
print(b)
# [3. 3. 3. 3. 4. 5. 6. 7. 8. 8.]
c = np.clip(a, 4, 10)
print(c)
# [4 4 4 4 4 5 6 7 8 9]
#a_min, a_max也可以输入与a 相同shape的数组
d = np.arange(4)
d1 = np.clip(d, [-1, 1, -3, 2], 2)
print(d)
print(d1)
# [0 1 2 3] #原数组
# [0 1 2 2] 
 
print(np.log10(1000))
 
def test_fft():
# FFT变换是针对一组数值进行运算的,这组数的长度N必须是2的整数次幂,例如64, 128, 256等等; 数值可以是实数也可以是复数,
# 通常我们的时域信号都是实数,因此下面都以实数为例。我们可以把这一组实数想像成对某个连续信号按照一定取样周期进行取样而得来,
# 如果对这组N个实数值进行FFT变换,将得到一个有N个复数的数组,我们称此复数数组为频域信号,此复数数组符合如下规律:
# 
# 下标为0和N/2的两个复数的虚数部分为0,
# 下标为i和N-i的两个复数共轭,也就是其虚数部分数值相同、符号相反。
 np.random.seed(66)
 X = np.random.rand(8)
 print(X)
#  [0.15428758 0.13369956 0.36268547 0.67910888 0.19445006 0.25121038
# 0.75841639 0.55761859]
 xf = np.fft.fft(X)
 print(xf)
#  [ 3.0914769 +0.j   -0.20916178+0.39291702j -0.77236422+0.85181752j
#  0.12883683-0.39854483j -0.15179792+0.j   0.12883683+0.39854483j
#  -0.77236422-0.85181752j -0.20916178-0.39291702j]
 #通过快速傅里叶变换的逆变换 ifft 还原成原来的值
 X1 = np.fft.ifft(xf)
 print(X1)
# [0.15428758+0.00000000e+00j 0.13369956-2.00387919e-16j
# 0.36268547+1.66533454e-16j 0.67910888+1.51815661e-16j
# 0.19445006+0.00000000e+00j 0.25121038-1.51815661e-16j
# 0.75841639-1.66533454e-16j 0.55761859+2.00387919e-16j] 
 
# 下面让我们来看看FFT变换之后的那些复数都代表什么意思。
# 
# 首先下标为0的实数表示了时域信号中的直流成分的多少
# 下标为i的复数a+b*j表示时域信号中周期为N/i个取样值的正弦波和余弦波的成分的多少, 其中a表示cos波形的成分,b表示sin波形的成分 
 X = np.ones(8)
 x2 = np.fft.fft(X) / len(X) # 为了计算各个成分的能量多少,需要将FFT的结果除以FFT的长度
 print(x2) 
# [1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
 
 X = np.arange(0, 2*np.pi, 2*np.pi/8)
 y = np.sin(X)
 x3 = np.fft.fft(y) /len(y)
 print(x3)
# [ 1.43029718e-18+0.00000000e+00j -4.44089210e-16-5.00000000e-01j # 只有下标为 1 的复数的虚部为-0.5,
# 1.53080850e-17-1.38777878e-17j 3.87727691e-17-1.11022302e-16j
# 2.91858728e-17+0.00000000e+00j 0.00000000e+00-1.11022302e-16j
# 1.53080850e-17+1.38777878e-17j 3.44084101e-16+5.00000000e-01j] 
 output1 = np.fft.fft(np.cos(X) / len(X)) 
 print(output1) 
# [-4.30636606e-17+0.00000000e+00j 5.00000000e-01-2.66538563e-16j #只有下标为1 的实部为 0.5
# 1.53080850e-17+0.00000000e+00j 5.55111512e-17+1.97149624e-16j
# 1.24474906e-17+0.00000000e+00j -1.11022302e-16+2.05306223e-16j
# 1.53080850e-17+0.00000000e+00j 5.00000000e-01-1.35917284e-16j] 
 
 #综合的例子
 X = np.arange(0, 2*np.pi, 2*np.pi/128)
 y = 0.3*np.cos(X) + 0.5*np.cos(2*X+np.pi/4) + 0.8*np.cos(3*X-np.pi/3)
 yf = np.fft.fft(y) / len(y)
 print(2*np.abs(yf[1]), np.rad2deg(np.angle(yf[1])))
#  0.30000000000000016 3.3130777931911615e-15   #计算出幅值和相位角
 print(2*np.abs(yf[2]), np.rad2deg(np.angle(yf[2])))
#  0.5000000000000002 44.999999999999986
 print(2*np.abs(yf[3]), np.rad2deg(np.angle(yf[3])))
#  0.7999999999999998 -60.00000000000007
 
# 周期为128/1.0点的余弦波的相位为0, 振幅为0.3
# 周期为64/2.0点的余弦波的相位为45度, 振幅为0.5
# 周期为128/3.0点的余弦波的相位为-60度,振幅为0.8
# test_fft()
 
#使用多个正玄波合成三角波
import pylab as pl
# 取FFT计算的结果freqs中的前n项进行合成,返回合成结果,计算loops个周期的波形
def fft_combine(freqs, n, loops=1):
 length = len(freqs) * loops
 data = np.zeros(length)
 index = loops * np.arange(0, length, 1.0) / length * (2 * np.pi)
 for k, p in enumerate(freqs[:n]):
  if k != 0: p *= 2 # 除去直流成分之外,其余的系数都*2
  data += np.real(p) * np.cos(k*index) # 余弦成分的系数为实数部
  data -= np.imag(p) * np.sin(k*index) # 正弦成分的系数为负的虚数部
 return index, data 
 
# 产生size点取样的三角波,其周期为1
def triangle_wave(size):
 x = np.arange(0, 1, 1.0/size)
 y = np.where(x<0.5, x, 0)
 y = np.where(x>=0.5, 1-x, y)
 return x, y
 
def test_show():
 fft_size = 256
 
 # 计算三角波和其FFT
 x, y = triangle_wave(fft_size)
 fy = np.fft.fft(y) / fft_size
 
 # 绘制三角波的FFT的前20项的振幅,由于不含下标为偶数的值均为0, 因此取
 # log之后无穷小,无法绘图,用np.clip函数设置数组值的上下限,保证绘图正确
 pl.figure()
 pl.plot(np.clip(20*np.log10(np.abs(fy[:20])), -120, 120), "o")
 pl.xlabel("frequency bin")
 pl.ylabel("power(dB)")
 pl.title("FFT result of triangle wave")
 
 # 绘制原始的三角波和用正弦波逐级合成的结果,使用取样点为x轴坐标
 pl.figure()
 pl.plot(y, label="original triangle", linewidth=2)
 for i in [0,1,3,5,7,9]:
  index, data = fft_combine(fy, i+1, 2) # 计算两个周期的合成波形
  pl.plot(data, label = "N=%s" % i)
 pl.legend()
 pl.title("partial Fourier series of triangle wave")
 pl.show()
 
# test_show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • Python 使用@property对属性进行数据规范性校验的实现

    Python 使用@property对属性进行数据规范性校验的实现

    本文主要介绍了Python 使用@property对属性进行数据规范性校验的实现,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-10-10
  • python用户管理系统

    python用户管理系统

    这篇文章主要为大家详细介绍了Python用户管理系统的相关代码,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-03-03
  • python中子类与父类的关系基础知识点

    python中子类与父类的关系基础知识点

    在本篇文章里小编给大家整理的是一篇关于python中子类与父类的关系基础知识点内容,对此有兴趣的朋友们可以学习下。
    2021-02-02
  • 一文搞懂Python中列表List和元组Tuple的使用

    一文搞懂Python中列表List和元组Tuple的使用

    列表List 和 元组Tuple 可以说是 Python 中最通用、最有用的数据类型。列表是动态的,而元组具有静态特征。本文将通过示例详细讲解二者的使用方法,需要的可以参考一下
    2022-04-04
  • Python实现员工信息管理系统

    Python实现员工信息管理系统

    这篇文章主要为大家详细介绍了Python实现员工信息管理系统,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-06-06
  • python如何导入依赖包

    python如何导入依赖包

    在本篇文章里小编给大家整理的是关于python导入依赖包的方法,需要的朋友们学习下。
    2020-07-07
  • Python优秀开源项目Rich源码解析的流程分析

    Python优秀开源项目Rich源码解析的流程分析

    这篇文章主要介绍了Python优秀开源项目Rich源码解析,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-07-07
  • Python学习之基础语法介绍

    Python学习之基础语法介绍

    大家好,本篇文章主要讲的是Python学习之基础语法介绍,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下,方便下次浏览
    2021-12-12
  • 用python实现文件备份

    用python实现文件备份

    大家好,本篇文章主要讲的是用python实现文件备份,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下
    2022-01-01
  • Python爬虫实现vip电影下载的示例代码

    Python爬虫实现vip电影下载的示例代码

    这篇文章主要介绍了Python爬虫实现vip电影下载的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-04-04

最新评论