python之拟合的实现

 更新时间:2019年07月19日 14:33:34   作者:your_answer  
这篇文章主要介绍了python之拟合的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

一、多项式拟合

多项式拟合的话,用的的是numpy这个库的polyfit这个函数。那么多项式拟合,最简单的当然是,一次多项式拟合了,就是线性回归。直接看代码吧

import numpy as np
 
def linear_regression(x,y):
 #y=bx+a,线性回归
 num=len(x)
 b=(np.sum(x*y)-num*np.mean(x)*np.mean(y))/(np.sum(x*x)-num*np.mean(x)**2)
 a=np.mean(y)-b*np.mean(x)
 return np.array([b,a])
def f(x):
 return 2*x+1
x=np.linspace(-5,5)
y=f(x)+np.random.randn(len(x))#加入噪音
y_fit=np.polyfit(x,y,1)#一次多项式拟合,也就是线性回归
print(linear_regression(x,y))
print(y_fit)

手写线性回归我还是会的,然后我们来看下输出:

[1.9937839 1.24167225]
[1.9937839 1.24167225]

由于有random每次显示的结果都不一样,但很明显的是上下两个print是意料之中的一样,emmmmm,一次多项式拟合的源代码应该就是像我写的那样。好了,那么一次以上呢?咳咳,我数学不算太好,还是老老实实用库函数吧,顺便画下图,见识它的威力。

import numpy as np
from matplotlib import pyplot as plt
 
def f(x):
 return x**2+1
def f_fit(x,y_fit):
 a,b,c=y_fit.tolist()
 return a*x**2+b*x+c
x=np.linspace(-5,5)
y=f(x)+np.random.randn(len(x))#加入噪音
y_fit=np.polyfit(x,y,2)#二次多项式拟合
y_show=np.poly1d(y_fit)#函数优美的形式
print(y_show)#打印
y1=f_fit(x,y_fit)
plt.plot(x,f(x),'r',label='original')
plt.scatter(x,y,c='g',label='before_fitting')#散点图
plt.plot(x,y1,'b--',label='fitting')
plt.title('polyfitting')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()#显示标签
plt.show()

输出:

2
1.001 x - 0.04002 x + 0.8952

拟合效果看起来还是不错的。

二、各种函数的拟合

一般来说,多项式的拟合就能拟合很多函数了,比如指数函数,取对数就能化为多项式函数,甚至是一次多项式函数。可是,那些三角函数之类的复杂函数不能化为多项式去拟合,怎么办呢?要用到scipy.optimize的curve_fit函数了。

直接贴代码:

import numpy as np
from matplotlib import pyplot as plt
from scipy.optimize import curve_fit
 
def f(x):
 return 2*np.sin(x)+3
def f_fit(x,a,b):
 return a*np.sin(x)+b
def f_show(x,p_fit):
 a,b=p_fit.tolist()
 return a*np.sin(x)+b
x=np.linspace(-2*np.pi,2*np.pi)
y=f(x)+0.5*np.random.randn(len(x))#加入了噪音
p_fit,pcov=curve_fit(f_fit,x,y)#曲线拟合
print(p_fit)#最优参数
print(pcov)#最优参数的协方差估计矩阵
y1=f_show(x,p_fit)
plt.plot(x,f(x),'r',label='original')
plt.scatter(x,y,c='g',label='before_fitting')#散点图
plt.plot(x,y1,'b--',label='fitting')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()

输出:

[1.91267059 3.04489528]
[[ 9.06910892e-03 -1.83703696e-11]
[-1.83703696e-11 4.44386331e-03]]

使用方法基础的就是这样了。然后更多详细的参数的使用就是要看官网了。

1、https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html

2、https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.curve_fit.html

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python 生成不重复的随机数的代码

    python 生成不重复的随机数的代码

    用的是筛选法,网上有解释,简单的说 就是先随机生成一串数字,之后用下标来判断这些数字有没有重复,重复的就筛去
    2011-05-05
  • Python 在局部变量域中执行代码

    Python 在局部变量域中执行代码

    这篇文章主要介绍了Python 如何在局部变量域中执行代码,帮助大家更好的理解和学习Python,感兴趣的朋友可以了解下
    2020-08-08
  • 对Python Class之间函数的调用关系详解

    对Python Class之间函数的调用关系详解

    今天小编就为大家分享一篇对Python Class之间函数的调用关系详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • 使用Keras实现Tensor的相乘和相加代码

    使用Keras实现Tensor的相乘和相加代码

    这篇文章主要介绍了使用Keras实现Tensor的相乘和相加代码,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • Python字符集和字符编码详情

    Python字符集和字符编码详情

    这篇文章主要介绍了Python字符集和字符编码详情,Python中的字符串是通过unicode来表示的,在底层对应的结构体是PyUnicodeObject,但是具体为什么呢?带着疑问一起学习下面文章内容吧
    2022-05-05
  • Python中的条件判断语句基础学习教程

    Python中的条件判断语句基础学习教程

    这篇文章主要介绍了Python中的条件判断语句基础学习教程,文中使用的是Python2.x版本但条件语句部分的使用规则未在3.x中改变,需要的朋友可以参考下
    2016-02-02
  • python 3.6 +pyMysql 操作mysql数据库(实例讲解)

    python 3.6 +pyMysql 操作mysql数据库(实例讲解)

    下面小编就为大家分享一篇python 3.6 +pyMysql 操作mysql数据库的实例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2017-12-12
  • python顺序执行多个py文件的方法

    python顺序执行多个py文件的方法

    今天小编大家分享一篇python顺序执行多个py文件的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-06-06
  • Python不改变Excel单元格样式方式—xls和xlsx两种格式

    Python不改变Excel单元格样式方式—xls和xlsx两种格式

    这篇文章主要介绍了Python不改变Excel单元格样式方式—xls和xlsx两种格式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-06-06
  • Python使用PyYAML库读写yaml文件的方法

    Python使用PyYAML库读写yaml文件的方法

    这篇文章主要介绍了Python使用PyYAML库读写yaml文件的方法,包括YAML基本概念介绍及YAML语法知识,结合示例代码给大家介绍的非常详细,需要的朋友可以参考下
    2022-04-04

最新评论