Python如何使用k-means方法将列表中相似的句子归类

 更新时间:2019年08月08日 15:25:01   作者:爱吃橙子的人吖  
这篇文章主要介绍了Python如何使用k-means方法将列表中相似的句子聚为一类,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

前言

由于今年暑假在学习一些自然语言处理的东西,发现网上对k-means的讲解不是很清楚,网上大多数代码只是将聚类结果以图片的形式呈现,而不是将聚类的结果表示出来,于是我将老师给的代码和网上的代码结合了一下,由于网上有许多关于k-means算法基础知识的讲解,因此我在这里就不多讲解了,想了解详细内容的,大家可以自行百度,在这里我只把我的代码给大家展示一下。

k-means方法的缺点是k值需要自己找,大家可以多换换k值,看看结果会有什么不同

代码

# coding: utf-8
import sys
import math
import re
import docx
from sklearn.cluster import AffinityPropagation
import nltk
from nltk.corpus import wordnet as wn
from nltk.collocations import *
import numpy as np
reload(sys)
sys.setdefaultencoding('utf8')
from sklearn.feature_extraction.text import CountVectorizer
#要聚类的数据
corpus = [
 'This is the first document.',#0
 'This is the second second document.',#1
 'And the third one.',#2
 'Is this the first document?',#3
 'I like reading',#4
 'do you like reading?',#5
 'how funny you are! ',#6
 'he is a good guy',#7
 'she is a beautiful girl',#8
 'who am i',#9
 'i like writing',#10
 'And the first one',#11
 'do you play basketball',#12
]
#将文本中的词语转换为词频矩阵
vectorizer = CountVectorizer()
#计算个词语出现的次数
X = vectorizer.fit_transform(corpus)#获取词袋中所有文本关键词
word = vectorizer.get_feature_names()
#类调用
transformer = TfidfTransformer()
#将词频矩阵X统计成TF-IDF值
tfidf = transformer.fit_transform(X)
#查看数据结构 tfidf[i][j]表示i类文本中的tf-idf权重
weight = tfidf.toarray()
# print weight
# kmeans聚类
from sklearn.cluster import KMeans
# print data
kmeans = KMeans(n_clusters=5, random_state=0).fit(weight)#k值可以自己设置,不一定是五类
# print kmeans
centroid_list = kmeans.cluster_centers_
labels = kmeans.labels_
n_clusters_ = len(centroid_list)
# print "cluster centroids:",centroid_list
print labels
max_centroid = 0
max_cluster_id = 0
cluster_menmbers_list = []
for i in range(0, n_clusters_):
 menmbers_list = []
 for j in range(0, len(labels)):
  if labels[j] == i:
   menmbers_list.append(j)
 cluster_menmbers_list.append(menmbers_list)
# print cluster_menmbers_list

#聚类结果
for i in range(0,len(cluster_menmbers_list)):
 print '第' + str(i) + '类' + '---------------------'
 for j in range(0,len(cluster_menmbers_list[i])):
  a = cluster_menmbers_list[i][j]
  print corpus[a]

运行结果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python实现根据给定坐标点生成多边形mask的例子

    python实现根据给定坐标点生成多边形mask的例子

    今天小编就为大家分享一篇python实现根据给定坐标点生成多边形mask的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • 一步步教你用python连接oracle数据库

    一步步教你用python连接oracle数据库

    oracle作为最强大的数据库,Python也提供了足够的支持。不过与其他数据库略有不同,下面这篇文章主要给大家介绍了关于如何使用python连接oracle数据库的相关资料,需要的朋友可以参考下
    2023-04-04
  • python基础之并发编程(二)

    python基础之并发编程(二)

    这篇文章主要介绍了详解python的并发编程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-10-10
  • 基于Python的一个自动录入表格的小程序

    基于Python的一个自动录入表格的小程序

    这篇文章主要介绍了基于Python的一个自动录入表格的小程序,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-08-08
  • Windows中使用wxPython和py2exe开发Python的GUI程序的实例教程

    Windows中使用wxPython和py2exe开发Python的GUI程序的实例教程

    wxPython是一款集成了Python的图形化类库的工具,而py2exe是一款将Python程序转换为exe可执行文件的程序,二者搭配可以轻松地在Windows中创建图形化程序,这里我们就来学习Windows中使用wxPython和py2exe开发Python的GUI程序的实例教程:
    2016-07-07
  • Pandas 模糊查询与替换的操作

    Pandas 模糊查询与替换的操作

    这篇文章主要介绍了Pandas 模糊查询与替换的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • 关于jupyter代码自动补全设置方式

    关于jupyter代码自动补全设置方式

    这篇文章主要介绍了关于jupyter代码自动补全设置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-06-06
  • python实现RSA加密(解密)算法

    python实现RSA加密(解密)算法

    RSA是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的绝大多数密码攻击,已被ISO推荐为公钥数据加密标准,下面通过本文给大家介绍python实现RSA加密(解密)算法,需要的朋友参考下
    2016-02-02
  • Python 实现字符串中指定位置插入一个字符

    Python 实现字符串中指定位置插入一个字符

    下面小编就为大家分享一篇Python 实现字符串中指定位置插入一个字符,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-05-05
  • Python中最神秘missing()函数介绍

    Python中最神秘missing()函数介绍

    大家好,本篇文章主要讲的是Python中最神秘missing()函数介绍,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下,方便下次浏览
    2021-12-12

最新评论