pytorch 固定部分参数训练的方法
更新时间:2019年08月17日 15:23:08 作者:guotong1988
今天小编就为大家分享一篇pytorch 固定部分参数训练的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
需要自己过滤
optimizer.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-3)
另外,如果是Variable,则可以初始化时指定
j = Variable(torch.randn(5,5), requires_grad=True)
但是如果是
m = nn.Linear(10,10)
是没有requires_grad传入的
m.requires_grad也没有
需要
for i in m.parameters(): i.requires_grad=False
另外一个小技巧就是在nn.Module里,可以在中间插入这个
for p in self.parameters(): p.requires_grad=False
这样前面的参数就是False,而后面的不变
class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.conv2 = nn.Conv2d(6, 16, 5) for p in self.parameters(): p.requires_grad=False self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10)
以上这篇pytorch 固定部分参数训练的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
解决Pycharm在Debug的时候一直“Connected”没有下一步动作问题
这篇文章主要介绍了解决Pycharm在Debug的时候一直“Connected”没有下一步动作问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教2023-08-08
最新评论