pytorch 模型可视化的例子
更新时间:2019年08月17日 17:39:30 作者:我~
今天小编就为大家分享一篇pytorch 模型可视化的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
如下所示:
一. visualize.py
from graphviz import Digraph import torch from torch.autograd import Variable def make_dot(var, params=None): """ Produces Graphviz representation of PyTorch autograd graph Blue nodes are the Variables that require grad, orange are Tensors saved for backward in torch.autograd.Function Args: var: output Variable params: dict of (name, Variable) to add names to node that require grad (TODO: make optional) """ if params is not None: assert isinstance(params.values()[0], Variable) param_map = {id(v): k for k, v in params.items()} node_attr = dict(style='filled', shape='box', align='left', fontsize='12', ranksep='0.1', height='0.2') dot = Digraph(node_attr=node_attr, graph_attr=dict(size="12,12")) seen = set() def size_to_str(size): return '('+(', ').join(['%d' % v for v in size])+')' def add_nodes(var): if var not in seen: if torch.is_tensor(var): dot.node(str(id(var)), size_to_str(var.size()), fillcolor='orange') elif hasattr(var, 'variable'): u = var.variable name = param_map[id(u)] if params is not None else '' node_name = '%s\n %s' % (name, size_to_str(u.size())) dot.node(str(id(var)), node_name, fillcolor='lightblue') else: dot.node(str(id(var)), str(type(var).__name__)) seen.add(var) if hasattr(var, 'next_functions'): for u in var.next_functions: if u[0] is not None: dot.edge(str(id(u[0])), str(id(var))) add_nodes(u[0]) if hasattr(var, 'saved_tensors'): for t in var.saved_tensors: dot.edge(str(id(t)), str(id(var))) add_nodes(t) add_nodes(var.grad_fn) return dot
二. 使用步骤
import torch from torch.autograd import Variable from models import * from visualize import make_dot x = Variable(torch.rand(1, 3, 256, 256)) model = GeneratorUNet() y = model(x) g = make_dot(y) g.view()
三. 效果展示
以上这篇pytorch 模型可视化的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
cv2.getStructuringElement()函数及开、闭、腐蚀、膨胀原理讲解
getStructuringElement()函数可用于构造一个特定大小和形状的结构元素,用于图像形态学处理,这篇文章主要介绍了cv2.getStructuringElement()函数及开、闭、腐蚀、膨胀原理讲解的相关资料,需要的朋友可以参考下2022-12-12python numpy矩阵信息说明,shape,size,dtype
这篇文章主要介绍了python numpy矩阵信息说明,shape,size,dtype,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2020-05-05
最新评论