pytorch 可视化feature map的示例代码

 更新时间:2019年08月20日 10:10:32   作者:牛丸4  
今天小编就为大家分享一篇pytorch 可视化feature map的示例代码,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

之前做的一些项目中涉及到feature map 可视化的问题,一个层中feature map的数量往往就是当前层out_channels的值,我们可以通过以下代码可视化自己网络中某层的feature map,个人感觉可视化feature map对调参还是很有用的。

不多说了,直接看代码:

import torch
from torch.autograd import Variable
import torch.nn as nn
import pickle

from sys import path
path.append('/residual model path')
import residual_model
from residual_model import Residual_Model

model = Residual_Model()
model.load_state_dict(torch.load('./model.pkl'))



class myNet(nn.Module):
  def __init__(self,pretrained_model,layers):
    super(myNet,self).__init__()
    self.net1 = nn.Sequential(*list(pretrained_model.children())[:layers[0]])
    self.net2 = nn.Sequential(*list(pretrained_model.children())[:layers[1]])
    self.net3 = nn.Sequential(*list(pretrained_model.children())[:layers[2]])

  def forward(self,x):
    out1 = self.net1(x)
    out2 = self.net(out1)
    out3 = self.net(out2)
    return out1,out2,out3

def get_features(pretrained_model, x, layers = [3, 4, 9]): ## get_features 其实很简单
'''
1.首先import model 
2.将weights load 进model
3.熟悉model的每一层的位置,提前知道要输出feature map的网络层是处于网络的那一层
4.直接将test_x输入网络,*list(model.chidren())是用来提取网络的每一层的结构的。net1 = nn.Sequential(*list(pretrained_model.children())[:layers[0]]) ,就是第三层前的所有层。

'''
  net1 = nn.Sequential(*list(pretrained_model.children())[:layers[0]]) 
#  print net1 
  out1 = net1(x) 

  net2 = nn.Sequential(*list(pretrained_model.children())[layers[0]:layers[1]]) 
#  print net2 
  out2 = net2(out1) 

  #net3 = nn.Sequential(*list(pretrained_model.children())[layers[1]:layers[2]]) 
  #out3 = net3(out2) 

  return out1, out2
with open('test.pickle','rb') as f:
  data = pickle.load(f)
x = data['test_mains'][0]
x = Variable(torch.from_numpy(x)).view(1,1,128,1) ## test_x必须为Varibable
#x = Variable(torch.randn(1,1,128,1))
if torch.cuda.is_available():
  x = x.cuda() # 如果模型的训练是用cuda加速的话,输入的变量也必须是cuda加速的,两个必须是对应的,网络的参数weight都是用cuda加速的,不然会报错
  model = model.cuda()
output1,output2 = get_features(model,x)## model是训练好的model,前面已经import 进来了Residual model
print('output1.shape:',output1.shape)
print('output2.shape:',output2.shape)
#print('output3.shape:',output3.shape)
output_1 = torch.squeeze(output2,dim = 0)
output_1_arr = output_1.data.cpu().numpy() # 得到的cuda加速的输出不能直接转变成numpy格式的,当时根据报错的信息首先将变量转换为cpu的,然后转换为numpy的格式
output_1_arr = output_1_arr.reshape([output_1_arr.shape[0],output_1_arr.shape[1]])

以上这篇pytorch 可视化feature map的示例代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • python字典取值的几种方法总结

    python字典取值的几种方法总结

    这篇文章主要介绍了python字典取值的几种方法总结,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-04-04
  • Python 数据结构之队列的实现

    Python 数据结构之队列的实现

    这篇文章主要介绍了Python 数据结构之队列的实现的相关资料,需要的朋友可以参考下
    2017-01-01
  • python学习笔记之多进程

    python学习笔记之多进程

    这篇文章主要介绍了python多进程的的相关资料,文中讲解非常细致,帮助大家更好的理解和学习Python,感兴趣的朋友可以了解下
    2020-08-08
  • 关于Numpy之repeat、tile的用法总结

    关于Numpy之repeat、tile的用法总结

    这篇文章主要介绍了关于Numpy之repeat、tile的用法总结,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-06-06
  • Python字符串类型及格式化问题

    Python字符串类型及格式化问题

    这篇文章主要介绍了Python字符串类型及格式化问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-02-02
  • python调用API实现智能回复机器人

    python调用API实现智能回复机器人

    这篇文章主要为大家详细介绍了python调用API实现智能回复机器人,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-04-04
  • Python创建一个自定义视频播放器的实现

    Python创建一个自定义视频播放器的实现

    本文主要介绍了Python创建一个自定义视频播放器的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • Django Form常用功能及代码示例

    Django Form常用功能及代码示例

    这篇文章主要介绍了Django Form常用功能及代码示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-10-10
  • python用BeautifulSoup库简单爬虫实例分析

    python用BeautifulSoup库简单爬虫实例分析

    文章给大家分享了关于python爬虫的相关实例以及相关代码,有兴趣的朋友们参考下。
    2018-07-07
  • 利用python爬取软考试题之ip自动

    利用python爬取软考试题之ip自动

    最近为了考试打算抓取网上的软考试题,在抓取中遇到一些问题,下面这篇文章主要介绍的是利用python爬取软考试题之ip自动的相关资料,文中介绍的非常详细,需要的朋友们下面来一起看看吧。
    2017-03-03

最新评论