对pytorch中的梯度更新方法详解

 更新时间:2019年08月20日 11:34:15   作者:库页  
今天小编就为大家分享一篇对pytorch中的梯度更新方法详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

背景

使用pytorch时,有一个yolov3的bug,我认为涉及到学习率的调整。收集到tencent yolov3和mxnet开源的yolov3,两个优化器中的学习率设置不一样,而且使用GPU数目和batch的更新也不太一样。据此,我简单的了解了下pytorch的权重梯度的更新策略,看看能否一窥究竟。

对代码说明

共三个实验,分布写在代码中的(一)(二)(三)三个地方。运行实验时注释掉其他两个

实验及其结果

实验(三):

不使用zero_grad()时,grad累加在一起,官网是使用accumulate 来表述的,所以不太清楚是取的和还是均值(这两种最有可能)。

不使用zero_grad()时,是直接叠加add的方式累加的。

tensor([[[ 1., 1.],……torch.Size([2, 2, 2])
0 2 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
tensor([[[ 2., 2.],…… torch.Size([2, 2, 2])
1 2 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
tensor([[[ 3., 3.],…… torch.Size([2, 2, 2])
2 2 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

实验(二):

单卡上不同的batchsize对梯度是怎么作用的。 mini-batch SGD中的batch是加快训练,同时保持一定的噪声。但设置不同的batchsize的权重的梯度是怎么计算的呢。

设置运行实验(二),可以看到结果如下:所以单卡batchsize计算梯度是取均值的

tensor([[[ 3., 3.],…… torch.Size([2, 2, 2])

实验(一):

多gpu情况下,梯度怎么合并在一起的。

在《training imagenet in 1 hours》中提到grad是allreduce的,是累加的形式。但是当设置g=2,实验一运行时,结果也是取均值的,类同于实验(二)

tensor([[[ 3., 3.],…… torch.Size([2, 2, 2])

实验代码

import torch
import torch.nn as nn
from torch.autograd import Variable


class model(nn.Module):
 def __init__(self, w):
  super(model, self).__init__()
  self.w = w

 def forward(self, xx):
  b, c, _, _ = xx.shape
  # extra = xx.device.index + 1 ## 实验(一)
  y = xx.reshape(b, -1).mm(self.w.cuda(xx.device).reshape(-1, 2) * extra)
  return y.reshape(len(xx), -1)


g = 1
x = Variable(torch.ones(2, 1, 2, 2))
# x[1] += 1 ## 实验(二)
w = Variable(torch.ones(2, 2, 2) * 2, requires_grad=True)
# optim = torch.optim.SGD({'params': x},
lr = 0.01
momentum = 0.9
M = model(w)

M = torch.nn.DataParallel(M, device_ids=range(g))

for i in range(3):
 b = len(x)
 z = M(x)
 zz = z.sum(1)
 l = (zz - Variable(torch.ones(b).cuda())).mean()
 # zz.backward(Variable(torch.ones(b).cuda()))
 l.backward()
 print(w.grad, w.grad.shape)
 # w.grad.zero_() ## 实验(三)
 print(i, b, '* * ' * 20)

以上这篇对pytorch中的梯度更新方法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python爬虫实例扒取2345天气预报

    Python爬虫实例扒取2345天气预报

    本篇文章给大家详细分析了通过Python爬虫如何采集到2345的天气预报信息,有兴趣的朋友参考学习下吧。
    2018-03-03
  • python上下文管理器异常问题解决方法

    python上下文管理器异常问题解决方法

    在本篇文章里小编给大家整理的是一篇关于python上下文管理器异常问题解决方法,对此有兴趣的朋友们可以学习参考下。
    2021-02-02
  • 音频处理 windows10下python三方库librosa安装教程

    音频处理 windows10下python三方库librosa安装教程

    这篇文章主要介绍了音频处理 windows10下python三方库librosa安装方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-06-06
  • pycharm连接虚拟机的实现步骤

    pycharm连接虚拟机的实现步骤

    本文主要介绍了pycharm连接虚拟机的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-12-12
  • PyQt5每天必学之切换按钮

    PyQt5每天必学之切换按钮

    这篇文章主要为大家详细介绍了PyQt5每天必学之切换按钮的相关资料,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-04-04
  • python判断变量是否为列表的方法

    python判断变量是否为列表的方法

    在本篇文章里小编给大家整理了关于python判断变量是否为列表的方法,有需要的朋友们可以学习下。
    2020-09-09
  • Python实现Harbor私有镜像仓库垃圾自动化清理详情

    Python实现Harbor私有镜像仓库垃圾自动化清理详情

    这篇文章主要介绍了Python实现Harbor私有镜像仓库垃圾自动化清理详情,文章围绕主题分享相关详细代码,需要的小伙伴可以参考一下
    2022-05-05
  • Python中Selenium库使用教程详解

    Python中Selenium库使用教程详解

    这篇文章主要介绍了Python中Selenium库使用教程详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-07-07
  • 详解Python网络爬虫功能的基本写法

    详解Python网络爬虫功能的基本写法

    这篇文章主要介绍了Python网络爬虫功能的基本写法,网络爬虫,即Web Spider,是一个很形象的名字。把互联网比喻成一个蜘蛛网,那么Spider就是在网上爬来爬去的蜘蛛,对网络爬虫感兴趣的朋友可以参考本文
    2016-01-01
  • python实现决策树

    python实现决策树

    这篇文章主要为大家详细介绍了python实现决策树的相关代码,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-12-12

最新评论