python接口调用已训练好的caffe模型测试分类方法
训练好了model后,可以通过python调用caffe的模型,然后进行模型测试的输出。
本次测试主要依靠的模型是在caffe模型里面自带训练好的结构参数:~/caffe/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel,以及结构参数
:~/caffe/models/bvlc_reference_caffenet/deploy.prototxt相结合,用python接口进行调用。
训练的源代码以及相应的注释如下所示:
# -*- coding: UTF-8 -*- import os import caffe import numpy as np root='/home/zf/caffe/'#指定根目录 deploy=root+'models/bvlc_reference_caffenet/deploy.prototxt'#结构文件 caffe_model=root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel' #已经训练好的model dir =root+'examples/images/'#保存测试图片的集合 filelist=[] filenames=os.listdir(dir) for fn in filenames: fullfilename = os.path.join(dir,fn) filelist.append(fullfilename) #filelist.append(fn) def Test(img): #加载模型 net = caffe.Net(deploy,caffe_model,caffe.TEST) # 加载输入和配置预处理 transformer = caffe.io.Transformer({'data':net.blobs['data'].data.shape}) transformer.set_mean('data', np.load('/home/zf/caffe/python/caffe/imagenet/ilsvrc_2012_mean.npy').mean(1).mean(1)) transformer.set_transpose('data', (2,0,1)) transformer.set_channel_swap('data', (2,1,0)) transformer.set_raw_scale('data', 255.0) #注意可以调节预处理批次的大小 #由于是处理一张图片,所以把原来的10张的批次改为1 net.blobs['data'].reshape(1,3,227,227) #加载图片到数据层 im = caffe.io.load_image(img) net.blobs['data'].data[...] = transformer.preprocess('data', im) #前向计算 out = net.forward() # 其他可能的形式 : out = net.forward_all(data=np.asarray([transformer.preprocess('data', im)])) #预测分类 print out['prob'].argmax() #打印预测标签 labels = np.loadtxt("/home/zf/caffe/data/ilsvrc12/synset_words.txt", str, delimiter='\t') top_k = net.blobs['prob'].data[0].flatten().argsort()[-1] print 'the class is:',labels[top_k] f=file("/home/zhengfeng/caffe/examples/zf/label.txt","a") f.writelines(img+' '+labels[top_k]+'\n') labels_filename=root +'data/ilsvrc12/synset_words.txt' #循环遍历文件夹root+'examples/images/'下的所有图片 for i in range(0,len(filelist)): img=filelist[i] Test(img)
ps:主要有以下的文件需要说明
待测试的文件夹里面的图片数据为:
最后的输出结果如下:
以下是本人定义的label.txt文件写入的预测的数据:
如果在编译的时候出现import caffe error的话,说明没有导入caffe
Export PYTHONPATH=$PYTHONPATH:/home/zf/caffe/python,如果还是不行,可能是你的caffe的python接口未编译,cd /home/zf/caffe,然后执行make pycaffe,接着再测试。
以上这篇python接口调用已训练好的caffe模型测试分类方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
Jupyter Notebook/VSCode导出PDF中文不显示的解决
这篇文章主要介绍了Jupyter Notebook/VSCode导出PDF中文不显示的解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教2023-06-06tensorflow实现测试时读取任意指定的check point的网络参数
今天小编就为大家分享一篇tensorflow实现测试时读取任意指定的check point的网络参数,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2020-01-01Python使用reportlab将目录下所有的文本文件打印成pdf的方法
这篇文章主要介绍了Python使用reportlab将目录下所有的文本文件打印成pdf的方法,涉及reportlab模块操作pdf文件的相关技巧,需要的朋友可以参考下2015-05-05
最新评论