python中struct模块之字节型数据的处理方法

 更新时间:2019年08月27日 10:48:12   作者:丶点小非  
今天小编就为大家分享一篇python中struct模块之字节型数据的处理方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

简介

这个模块处理python中常见类型数据和Python bytes之间转换。这可用于处理存储在文件或网络连接中的bytes数据以及其他来源。在python中没有专门处理字节的数据类型,建立字节型数据也比较麻烦,我们知道的bytes()函数也只能对无符号整型做处理,并且数据如下(没错,数字为多少就有多少个\x00,我们要是用这种方式来存储大量数据,结果可想而知):

va = bytes(1) # va: '\x00'
vb = bytes(2) # vb: '\x00\x00'
vc = bytes(5) # vc: '\x00\x00\x00\x00\x00'

但在python中str类型中既可以用字符串表示也可以以字节方式表示,所以你定义一个字节型的字符串常量,python是能处理它的:

va = '\x26' # va: '&'

struct处理

字节顺序

一个数据有多个字节表示的时候,字节的顺序不同也就决定了值,在struct中有以下几种字节顺序:

字符 字节顺序 尺寸 对齐方式
@ 本机 本机 本机
= 本机 标准
< 小端 标准
> 大端 标准
网络 标准

对于字节顺序,只有大端和小端两种方式,只是比如你用@和=代表你用本机的字节顺序,!代表你使用网络的字节顺序。你不指定字节顺序则默认的是@。

本地字节顺序是大端或小端,取决于主机系统。例如,Intel x86和AMD64(x86-64)是小端的; 摩托罗拉68000和PowerPC G5是大端; ARM和Intel Itanium具有可切换的字节序(双字节序)。使用sys.byteorder来检查你的系统的字节顺序。

数据格式

struct支持的打包解包的数据格式如下,我们需要指定格式才能对应处理,其中对应尺寸已列出(以字节为单位):

字符 C类型 python类型 标准尺寸
x 填充字节 没有意义的值
c char 长度为1的字节 1
b signed char 整型 1
B unsigned char 整型 1
_Bool 布尔 1
h short 整型 2
H unsigned short 整型 2
i int 整型 4
I unsigned int 整型 4
l long 整型 4
L unsigned long 整型 4
q long long 整型 8
Q unsigned long long 整型 8
n ssize_t 整型
N size_t 整型
e 浮动 2
f float 浮动 4
d double 浮动 8
s char[] 字节
p char[] 字节
P void * 整型

打包

通过struct的pack(fmt, *args)来实现对各种数据的打包(转换为对应字节数据),pack的需要传递的参数fmt就是数据的格式,包括了字节顺序、数据类型;后面的*args参数是需要打包的数据。

vaa = struct.pack('>I', 1255) # vaa: '\x00\x00\x04\xe7' 1*4=1个字节 vab = struct.pack('>II', 1255, 23) # vab: '\x00\x00\x04\xe7\x00\x00\x00\x17' 2*4=8个字节 vac = struct.pack('>2I?', 1255, 23, True) # vac: '\x00\x00\x04\xe7\x00\x00\x00\x17\x01' 2*4+1=9个字节

我们看上述三个使用例子(数据与数据之间没有填充,都是连续的,比如对于vac我们不知道 它是由两个4字节无符号整型和一个布尔构成,我们就无法取得正确的值),看fmt参数:

‘>I'代表了以大端的字节顺序打包一个4字节无符号整型数据,所以后面只跟了一个无符号整型参数1255;

‘>II'代表了以大端的字节顺序打包两个4字节无符号整型数据,所以后面跟了两个个无符号整型参数1255和23;

‘>2I?'代表了以大端的字节顺序打包两个4字节无符号整型和一个布尔型数据,所以后面跟了两个个无符号整型参数1255、23和一个布尔值True。

注意'2I'和'II','4I'和'IIII','2?'和'??'是一样的效果。

解包

通过struct的unpack(fmt, string)来实现对字符串的解包,fmt和打包的是完全一样的,如下(返回的结果是一个元组):

vaa = struct.pack('>I', 1255) # vaa: '\x00\x00\x04\xe7'
vab = struct.pack('>II', 1255, 23) # vab: '\x00\x00\x04\xe7\x00\x00\x00\x17'
vaaa = struct.unpack('>I', vaa) # vaaa: <class 'tuple'>: (1255, )
vaba = struct.unpack('>II', vab) # vaba: <class 'tuple'>: (1255, 23)

进阶使用

pack_into(fmt, buffer, offset, *args)

fmt参数和pack是一样的,buffer参数是可写的缓存区,offset是写入位置的偏移量,*args是需要写入的数据。这个有什么用呢,我们想想这样两个情况,我们有两个类型已经打包好,我们想在这两个已经打包好的数据后面再添加一个数据打包;或者我们要打包的数据很多,我们不可能在pack中把所有需要打包的数据都通过参数传递给pack,那你的pack函数可能得写成千上完个参数了。这时候我们就可以用到这个函数了。

要使用它必须要一个可以写入的缓存区,我们可以导入一个字符缓存区包,然后创建一个固定大小的缓存区(以字节为单位):

import struct
from ctypes import create_string_buffer

# 创建一个9字节大小的缓存区,初始化默认全部为\x00 
buf = create_string_buffer(9) # buf.raw: '\x00\x00\x00\x00\x00\x00\x00\x00\x00'

# 冲缓存区buf的第0个字节开始打包两个4字节无符号整型数据1和2
struct.pack_into(">II", buf, 0, 1, 2) # buf.raw: '\x00\x00\x00\x01\x00\x00\x00\x02\x00'
# 然后我们想再打包一个布尔型数据到buf中就可以改变以下偏移量
struct.pack_into(">?", buf, 8, True) # buf.raw: '\x00\x00\x00\x01\x00\x00\x00\x02\x01'

unpack_from(fmt, buffer, offset)和calcsize(fmt)结合解包数据

calcsize用于计算格式字符串所对应的结果的长度,如:struct.calcsize(‘II'),返回8。因为两个无符号整型所占用的长度是8个字节。unpack_from(fmt, buffer, offset)用于从buffer缓存区中使用fmt格式从offset偏移量处开始解包fmt里对应数量的数据。

import struct
from ctypes import create_string_buffer

buf = create_string_buffer(9)
struct.pack_into(">II", buf, 0, 1, 2)
struct.pack_into(">?", buf, 8, True)
# 记录位置
pos = 0
# 从buf缓存区中以大端方式从偏移位置pos处解包两个无符号整型数据返回,注意
#返回值如果只写一个则返回一个元组,否则你解包几个数据就要写几个返回值。
val = struct.unpack_from('>II', buf, pos) # val: <class 'tuple'>: (1, 2)
val_a, val_b = struct.unpack_from('>II', buf, pos) # val_a: 1 val_b: 2

# 重置解包位置
pos += struct.calcsize('>II') # pos: 8
val_c, = struct.unpack_from('>?', buf, pos) # val_c: True

示例

这个示例是基于mnist手写数字识别的,我们刚开始有60000张手写数字的图片(.bmp格式的),我们通过下述代码将60000张图片转换成字节型数据,bytes.py代码如下:

import struct
import os
import numpy as np
from ctypes import create_string_buffer
import cv2

# 创建一个60000 * 784 * 1 + 3 * 4字节大小的缓存区,初始化默认全部为\x00
buffer = create_string_buffer(60000 * 784 * 1 + 3 * 4)
def writeBytesData():
 index = 0
 BMP_NUM = 0
 BMP_WIDTH = 28
 BMP_HEIGHT = 28

 # 先保留三个无符号整型的缓存区
 index += struct.calcsize('>III')
 path = 'data/bmp'
 if not os.path.exists(path):
  print('No this dir!')
  return
 list = os.listdir(path)
 for line_bmp in list:
  bmp_path = os.path.join(path, line_bmp)
  if os.path.isdir(bmp_path):
   print('This is not a .bmp')
  else:
   BMP_NUM += 1
   print(BMP_NUM)
   buf = cv2.imread(bmp_path, cv2.IMREAD_GRAYSCALE)
   buf = np.reshape(buf, [784])
   for pos in range(buf.__len__()):
    struct.pack_into('>B', buffer, index, buf[pos])
    index += struct.calcsize('>B')

 # 将保留缓存区的内容填上
 struct.pack_into('>III', buffer, 0, BMP_NUM, BMP_WIDTH, BMP_HEIGHT)
 with open('data/bytes/bytes.bytes', 'wb') as fp:
  fp.write(buffer)


def readFromBytes():
 index = 0
 images = []
 with open('data/bytes/bytes.bytes', 'rb') as fp:
  buffer = fp.read()
  # 解包前三个无符号整型
  bmp_num, bmp_width, bmp_height = struct.unpack_from('>III', buffer, index)

  # 重定位偏移量
  index += struct.calcsize('>III')
  for pos in range(bmp_num):
   img = struct.unpack_from('>784B', buffer, index)
   index += struct.calcsize('>784B')
   # 修改为原来的图片形状
   img = np.array(img, dtype=np.uint8)
   img = np.reshape(img, [bmp_height, bmp_width])
   # 显示图片
   cv2.imshow('bmp', img)
   # 按任意键继续
   cv2.waitKey(0)
   images.append(img)
 return images


writeBytesData()
readFromBytes()

在写入bytes文件的时候有点慢,由于有60000张图片每张要写28 * 28个字节,其中目录结构如下,需要图片的可以去我的下载区下载mnist图片数据集:

bytes.py
data
 bmp
  1.bmp
  2.bmp
  ...
  60000.bmp
 bytes

以上这篇python中struct模块之字节型数据的处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • 在python中使用pyspark读写Hive数据操作

    在python中使用pyspark读写Hive数据操作

    这篇文章主要介绍了在python中使用pyspark读写Hive数据操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • Python Sql数据库增删改查操作简单封装

    Python Sql数据库增删改查操作简单封装

    这篇文章主要为大家介绍了Python Sql数据库增删改查操作简单封装,感兴趣的小伙伴们可以参考一下
    2016-04-04
  • python KNN算法实现鸢尾花数据集分类

    python KNN算法实现鸢尾花数据集分类

    这篇文章主要介绍了python KNN算法实现鸢尾花数据集分类,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-10-10
  • python使用xlrd模块读写Excel文件的方法

    python使用xlrd模块读写Excel文件的方法

    这篇文章主要介绍了python使用xlrd模块读写Excel文件的方法,较为详细的分析了xlrd模块的安装、使用与操作Excel文件的相关技巧,需要的朋友可以参考下
    2015-05-05
  • Python3实现将本地JSON大数据文件写入MySQL数据库的方法

    Python3实现将本地JSON大数据文件写入MySQL数据库的方法

    这篇文章主要介绍了Python3实现将本地JSON大数据文件写入MySQL数据库的方法,涉及Python针对json大数据文件的逐行读取、mysql数据库写入等相关操作技巧,需要的朋友可以参考下
    2018-06-06
  • 浅析python中的绝对导入和相对导入

    浅析python中的绝对导入和相对导入

    这篇文章主要是想和大家简单聊聊python中绝对导入和相对导入的相关知识,文中的示例代码讲解详细,具有一定的借鉴价值,需要的可以参考下
    2023-09-09
  • Python使用pylab库实现画线功能的方法详解

    Python使用pylab库实现画线功能的方法详解

    这篇文章主要介绍了Python使用pylab库实现画线功能的方法,结合具体实例分析了Python使用pylab库的相关函数实现画线功能的操作技巧,并附带说明了相关函数与参数功能,需要的朋友可以参考下
    2017-06-06
  • python绘制地震散点图

    python绘制地震散点图

    这篇文章主要为大家详细介绍了python绘制地震散点图的相关方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-06-06
  • VPS CENTOS 上配置python,mysql,nginx,uwsgi,django的方法详解

    VPS CENTOS 上配置python,mysql,nginx,uwsgi,django的方法详解

    这篇文章主要介绍了VPS CENTOS 上配置python,mysql,nginx,uwsgi,django的方法,较为详细的分析了VPS CENTOS 上配置python,mysql,nginx,uwsgi,django的具体步骤、相关命令与操作注意事项,需要的朋友可以参考下
    2019-07-07
  • python加密打包程序详解

    python加密打包程序详解

    这篇文章主要介绍了python加密打包程序,还给大家介绍了Python实现文件简单加解密的方法,本文通过示例代码给大家介绍的非常详细,需要的朋友可以参考下
    2023-04-04

最新评论