opencv实现简单人脸识别

 更新时间:2021年02月19日 15:19:23   作者:Lin_QC  
这篇文章主要为大家详细介绍了opencv实现简单人脸识别,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

对于opencv 它提供了许多已经练习好的模型可供使用,我们需要通过他们来进行人脸识别

参考了网上许多资料 

假设你已经配好了开发环境 ,在我之前的博客中由开发环境的配置。

项目代码结构:

dataSet : 存储训练用的图片,他由data_gen生成,当然也可以修改代码由其他方式生成

haarcascade_frontalface_alt.xml  、 haarcascade_frontalface_default.xml: 用于人脸检测的haar分类器,网上普遍说第一个效果更好,第二个运行速度更快

data_gen.py:生成我们所需的数据

trainer.py: 训练数据集

train.yml: 由train.py生成的人脸识别模型,供后面的人脸识别使用

recognize.py:视频中的人脸识别

data_gen.py

连续拍20张照片当作训练数据,每个人建立一组数据

import cv2
 
detector = cv2.CascadeClassifier('haarcascade_frontalface_alt.xml')
cap = cv2.VideoCapture(0)
sampleNum = 0
Id = input('enter your id: ')
 
while True:
 ret, img = cap.read()
 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 faces = detector.detectMultiScale(gray, 1.3, 5)
 for (x, y, w, h) in faces:
 cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
 
 # incrementing sample number
 sampleNum = sampleNum + 1
 # saving the captured face in the dataset folder
 cv2.imwrite("dataSet/User." + str(Id) + '.' + str(sampleNum) + ".jpg", gray[y:y + h, x:x + w]) #
 
 cv2.imshow('frame', img)
 # wait for 100 miliseconds
 if cv2.waitKey(100) & 0xFF == ord('q'):
 break
 # break if the sample number is morethan 20
 elif sampleNum > 20:
 break
 
cap.release()
cv2.destroyAllWindows()

train.py

训练数据

import cv2
import os
import numpy as np
from PIL import Image
 
# recognizer = cv2.createLBPHFaceRecognizer()
detector = cv2.CascadeClassifier("/Users/qiuchenglin/PycharmProjects/face_recognize/haarcascade_frontalface_alt.xml")
recognizer = cv2.face.LBPHFaceRecognizer_create()
 
 
def get_images_and_labels(path):
 image_paths = [os.path.join(path, f) for f in os.listdir(path)]
 face_samples = []
 ids = []
 
 for image_path in image_paths:
 image = Image.open(image_path).convert('L')
 image_np = np.array(image, 'uint8')
 if os.path.split(image_path)[-1].split(".")[-1] != 'jpg':
 continue
 image_id = int(os.path.split(image_path)[-1].split(".")[1])
 faces = detector.detectMultiScale(image_np)
 for (x, y, w, h) in faces:
 face_samples.append(image_np[y:y + h, x:x + w])
 ids.append(image_id)
 
 return face_samples, ids
 
 
Faces, Ids = get_images_and_labels('dataSet')
recognizer.train(Faces, np.array(Ids))
recognizer.save('trainner.yml')

recognize.py

下面就是根据训练好的模型进行人脸识别,根据之前生成数据的编号,可以填入相对应的人名,例如以下示例我训练了三组人的数据

import cv2
import numpy as np
 
recognizer = cv2.face.LBPHFaceRecognizer_create()
# recognizer = cv2.createLBPHFaceRecognizer() # in OpenCV 2
recognizer.read('/Users/qiuchenglin/PycharmProjects/face_recognize/trainner.yml')
# recognizer.load('trainner/trainner.yml') # in OpenCV 2
 
cascade_path = "/Users/qiuchenglin/PycharmProjects/face_recognize/haarcascade_frontalface_alt.xml"
face_cascade = cv2.CascadeClassifier(cascade_path)
cam = cv2.VideoCapture(0)
# font = cv2.cv.InitFont(cv2.cv.CV_FONT_HERSHEY_SIMPLEX, 1, 1, 0, 1, 1) # in OpenCV 2
font = cv2.FONT_HERSHEY_SIMPLEX
 
while True:
 ret, im = cam.read()
 gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
 faces = face_cascade.detectMultiScale(gray, 1.2, 5)
 for (x, y, w, h) in faces:
 cv2.rectangle(im, (x - 50, y - 50), (x + w + 50, y + h + 50), (225, 0, 0), 2)
 img_id, conf = recognizer.predict(gray[y:y + h, x:x + w])
 if conf > 50:
 if img_id == 1:
 img_id = 'liuzb'
 elif img_id == 2:
 img_id = 'linqc'
 elif img_id == 3:
 img_id = 'keaibao'
 else:
 img_id = "Unknown"
 # cv2.cv.PutText(cv2.cv.fromarray(im), str(Id), (x, y + h), font, 255)
 cv2.putText(im, str(img_id), (x, y), font, 1, (0, 255, 0), 1)
 cv2.imshow('im', im)
 if cv2.waitKey(10) & 0xFF == ord('q'):
 break
 
cam.release()
cv2.destroyAllWindows() 

简单的一个人脸识别就完成了,只能说准确率没有非常高。

之后想办法进行提高。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • Python入门教程(四十)Python的NumPy数组创建

    Python入门教程(四十)Python的NumPy数组创建

    这篇文章主要介绍了Python入门教程(四十)Python的NumPy数组创建,NumPy 用于处理数组,NumPy 中的数组对象称为 ndarray,我们可以使用 array() 函数创建一个 NumPy ndarray 对象,需要的朋友可以参考下
    2023-05-05
  • python神经网络Keras搭建RFBnet目标检测平台

    python神经网络Keras搭建RFBnet目标检测平台

    这篇文章主要为大家介绍了python神经网络Keras搭建RFBnet目标检测平台,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-05-05
  • python使用DebugInfo模块打印一个条形堆积图

    python使用DebugInfo模块打印一个条形堆积图

    今天介绍一个不使用 matplot,通过 DebugInfo模块打印条形堆积图的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧
    2023-08-08
  • 跟老齐学Python之正规地说一句话

    跟老齐学Python之正规地说一句话

    虽然在第一部分中,已经零星涉及到语句问题,并且在不同场合也进行了一些应用。毕竟不那么系统。本部分,就比较系统地介绍python中的语句。
    2014-09-09
  • vscode+PyQt5安装详解步骤

    vscode+PyQt5安装详解步骤

    这篇文章主要介绍了vscode+PyQt5安装详解步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-08-08
  • Pytorch实现将label变成one hot编码的两种方式

    Pytorch实现将label变成one hot编码的两种方式

    这篇文章主要介绍了Pytorch实现将label变成one hot编码的两种方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-02-02
  • pandas 按照特定顺序输出的实现代码

    pandas 按照特定顺序输出的实现代码

    这篇文章主要介绍了pandas 按照特定顺序输出的实现代码,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
    2018-07-07
  • Python修改文件往指定行插入内容的实例

    Python修改文件往指定行插入内容的实例

    今天小编就为大家分享一篇Python修改文件往指定行插入内容的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • pandas学习之df.fillna的具体使用

    pandas学习之df.fillna的具体使用

    本文主要介绍了pandas学习之df.fillna的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-08-08
  • python调用subprocess模块实现命令行操作控制SVN的方法

    python调用subprocess模块实现命令行操作控制SVN的方法

    这篇文章主要介绍了使用python的subprocess模块实现对SVN的相关操作,通过设置GitSvn类,在该类下自定义执行SVN常规操作的方法,需要的朋友跟随小编一起看看吧
    2022-09-09

最新评论