Python 实现大整数乘法算法的示例代码
我们平时接触的长乘法,按位相乘,是一种时间复杂度为 O(n ^ 2) 的算法。今天,我们来介绍一种时间复杂度为 O (n ^ log 3) 的大整数乘法(log 表示以 2 为底的对数)。
介绍原理
karatsuba 算法要求乘数与被乘数要满足以下几个条件,第一,乘数与被乘数的位数相同;第二,乘数与被乘数的位数应为 2 次幂,即为 2 ^ 2, 2 ^ 3, 2 ^ 4, 2 ^ n 等数值。
下面我们先来看几个简单的例子,并以此来了解 karatsuba 算法的使用方法。
两位数相乘
我们设被乘数 A = 85,乘数 B = 41。下面来看我们的操作步骤:
将 A, B 一分为二,令 p = A 的前半部分 = 8,q = A 的后半部分 = 5 , r = B 的前半部分 = 4 ,s = B 的后半部分 = 1,n = 2。通过简单的数学运算:
A * B = pq * rs = (p * 10 + q) * (r * 10 + s) = p * r * 10 ^ 2 + (p * s + q * r ) * 10 + q * s。
令 u = p * r,v =(p - q) * (s - r),w = q * s。所以 A * B = u * 10 ^ 2 + (u + v + w) * 10 + w。
换成数值求解的过程如下:
A * B = 85 * 41 = (8 * 10 + 5) * ( 4 * 10 + 1) = 8 * 4 * 10 * 10 + (8 * 1 + 5 * 4) * 10 + 5 * 1。
其中 u = 8 * 4 = 32,v = (8 - 5) (1 - 4) = -9,w = 5 * 1 = 5。
所以,A * B = 32 * 100 + (32 - 9 + 5) * 10 + 5 = 3485。与长乘法所得结果一致。
四位数相乘
我们设被乘数 A = 8537,乘数 B = 4123。下面来看我们的操作步骤:
将 A, B 一分为二,令 p = A 的前半部分 = 85,q = A 的后半部分 = 37 , r = B 的前半部分 = 41 ,s = B 的后半部分 = 23,n = 4。
==> 其中,u = 85 * 41, v = (85 - 37) * (23 - 41), w = 37 * 23。
==> A * B = 8537 * 4123 = u * 10 ^ 4 + (u + v + w) * 10 ^ 2 + w = 3485_0000 +34_7200 + 851 = 35198051。
在我们计算 u, v, w 的过程中又会涉及两位数的乘法,我们继续使用 Karatsuba 算法得出两位数相乘的结果。
N 位数相乘
我们令 n 为 乘数与被乘数的位数,令 p = A 的前半部分,q = A 的后半部分, r = B 的前半部分 ,s = B 的后半部分。
==> 其中, u = p * r,v = (p - q) * (s - r),w = q * s。
所以 A * B = u * 10 ^ n + (u + v + w) * 10 ^ (n / 2) + w。
而 u, v, w 则是两个 n / 2 位的乘法运算。我们继续调用 Karatsuba 算法计算 u, v, w 的数值。接着,我们在计算 n / 2 乘法的过程中又会遇到 n / 4 位的乘法运算……以此类推,直到我们遇到两个个位数的乘法,我们就直接返回这两个个位数乘法的结果。层层返回,最终得到 N 位数的乘法结果。
时间复杂度
我们平常使用的长乘法,是 O (n ^ 2) 的时间复杂度。比如两个 N 位数相乘,我们需要将每一位按规则相乘,所以需要计算 N * N 次乘法。而使用 Karatsuba 算法每层需要计算三次乘法,两次加法,以及若干次加法,每使用一次 karatsuba 算法,乘法规模就下降一半。
所以,对于两个 n = 2 ^ K 位数乘法运算,我们需要计算 3 ^ k 次乘法运算。而 K = log n(底数为 2), 3 ^ K = 3 ^ log n = 2 ^ (log 3 * log n) = 2 ^ (log n * log 3) = n ^ log 3 (底数为 2)。
代码实现
from math import log2, ceil def pad(string: str, real_len: int, max_len: int) -> str: pad_len: int = max_len - real_len return f"{'0' * pad_len}{string}" def kara(n1: int, n2: int) -> int: if n1 < 10 or n2 < 10: return n1 * n2 n1_str: str = str(n1) n2_str: str = str(n2) n1_len: int = len(n1_str) n2_len: int = len(n2_str) real_len: int = max(n1_len, n2_len) max_len: int = 2 ** ceil(log2(real_len)) mid_len: int = max_len >> 1 n1_pad: str = pad(n1_str, n1_len, max_len) n2_pad: str = pad(n2_str, n2_len, max_len) p: int = int(n1_pad[:mid_len]) q: int = int(n1_pad[mid_len:]) r: int = int(n2_pad[:mid_len]) s: int = int(n2_pad[mid_len:]) u: int = kara(p, r) v: int = kara(q-p, r-s) w: int = kara(q, s) return u * 10 ** max_len + (u+v+w) * 10 ** mid_len + w
输出结果:
==> kara(123456, 9734) == 123456 * 9734
==> kara(1234233456756, 32459734) == 1234233456756 * 32459734
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
相关文章
Python数据可视化 pyecharts实现各种统计图表过程详解
这篇文章主要介绍了Python数据可视化 pyecharts实现各种统计图表过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下2019-08-08python人工智能tensorflow常见损失函数LOSS汇总
这篇文章主要为大家介绍了python人工智能tensorflowf常见损失函数LOSS汇总,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪2022-05-05
最新评论