PyTorch预训练的实现

 更新时间:2019年09月18日 11:12:51   作者:算法学习者  
这篇文章主要介绍了PyTorch预训练的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

前言

最近使用PyTorch感觉妙不可言,有种当初使用Keras的快感,而且速度还不慢。各种设计直接简洁,方便研究,比tensorflow的臃肿好多了。今天让我们来谈谈PyTorch的预训练,主要是自己写代码的经验以及论坛PyTorch Forums上的一些回答的总结整理。

直接加载预训练模型

如果我们使用的模型和原模型完全一样,那么我们可以直接加载别人训练好的模型:

my_resnet = MyResNet(*args, **kwargs)
my_resnet.load_state_dict(torch.load("my_resnet.pth"))

当然这样的加载方法是基于PyTorch推荐的存储模型的方法:

torch.save(my_resnet.state_dict(), "my_resnet.pth")

还有第二种加载方法:

my_resnet = torch.load("my_resnet.pth")

加载部分预训练模型

其实大多数时候我们需要根据我们的任务调节我们的模型,所以很难保证模型和公开的模型完全一样,但是预训练模型的参数确实有助于提高训练的准确率,为了结合二者的优点,就需要我们加载部分预训练模型。

pretrained_dict = model_zoo.load_url(model_urls['resnet152'])
model_dict = model.state_dict()
# 将pretrained_dict里不属于model_dict的键剔除掉
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 更新现有的model_dict
model_dict.update(pretrained_dict)
# 加载我们真正需要的state_dict
model.load_state_dict(model_dict)

因为需要剔除原模型中不匹配的键,也就是层的名字,所以我们的新模型改变了的层需要和原模型对应层的名字不一样,比如:resnet最后一层的名字是fc(PyTorch中),那么我们修改过的resnet的最后一层就不能取这个名字,可以叫fc_

微改基础模型预训练

对于改动比较大的模型,我们可能需要自己实现一下再加载别人的预训练参数。但是,对于一些基本模型PyTorch中已经有了,而且我只想进行一些小的改动那么怎么办呢?难道我又去实现一遍吗?当然不是。

我们首先看看怎么进行微改模型。

微改基础模型

PyTorch中的torchvision里已经有很多常用的模型了,可以直接调用:

  • AlexNet
  • VGG
  • ResNet
  • SqueezeNet
  • DenseNet
import torchvision.models as models
resnet18 = models.resnet18()
alexnet = models.alexnet()
squeezenet = models.squeezenet1_0()
densenet = models.densenet_161()

但是对于我们的任务而言有些层并不是直接能用,需要我们微微改一下,比如,resnet最后的全连接层是分1000类,而我们只有21类;又比如,resnet第一层卷积接收的通道是3, 我们可能输入图片的通道是4,那么可以通过以下方法修改:

resnet.conv1 = nn.Conv2d(4, 64, kernel_size=7, stride=2, padding=3, bias=False)
resnet.fc = nn.Linear(2048, 21)

简单预训练

模型已经改完了,接下来我们就进行简单预训练吧。
我们先从torchvision中调用基本模型,加载预训练模型,然后,重点来了,将其中的层直接替换为我们需要的层即可:

resnet = torchvision.models.resnet152(pretrained=True)
# 原本为1000类,改为10类
resnet.fc = torch.nn.Linear(2048, 10)

其中使用了pretrained参数,会直接加载预训练模型,内部实现和前文提到的加载预训练的方法一样。因为是先加载的预训练参数,相当于模型中已经有参数了,所以替换掉最后一层即可。OK!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • 用Python批量把文件复制到另一个文件夹的实现方法

    用Python批量把文件复制到另一个文件夹的实现方法

    这篇文章主要介绍了用Python批量把文件复制到另一个文件夹的实现方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-08-08
  • python+opencv实现移动侦测(帧差法)

    python+opencv实现移动侦测(帧差法)

    这篇文章主要为大家详细介绍了python+opencv实现移动侦测,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-03-03
  • 对Python新手编程过程中如何规避一些常见问题的建议

    对Python新手编程过程中如何规避一些常见问题的建议

    这篇文章中作者对Python新手编程过程中如何规避一些常见问题给出了建议,主要着眼于初学者对于一些常用函数方法在平时的使用习惯中的问题给出建议,需要的朋友可以参考下
    2015-04-04
  • python和pygame实现简单俄罗斯方块游戏

    python和pygame实现简单俄罗斯方块游戏

    这篇文章主要为大家详细介绍了python和pygame实现简单俄罗斯方块游戏,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-06-06
  • python返回昨天日期的方法

    python返回昨天日期的方法

    这篇文章主要介绍了python返回昨天日期的方法,涉及Python日期操作的相关技巧,需要的朋友可以参考下
    2015-05-05
  • Pycharm学习教程(3) 代码运行调试

    Pycharm学习教程(3) 代码运行调试

    这篇文章主要为大家详细介绍了最全的Pycharm学习教程第三篇代码运行调试,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-05-05
  • python3 mmh3安装及使用方法

    python3 mmh3安装及使用方法

    这篇文章主要介绍了python3 mmh3安装及使用方法,本文给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-10-10
  • Tensorflow 实现释放内存

    Tensorflow 实现释放内存

    今天小编就为大家分享一篇Tensorflow 实现释放内存,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • Python Numpy 数组的初始化和基本操作

    Python Numpy 数组的初始化和基本操作

    Python 是一种高级的,动态的,多泛型的编程语言。接下来通过本文给大家介绍Python Numpy 数组的初始化和基本操作,感兴趣的朋友一起看看吧
    2018-03-03
  • Python获取时光网电影数据的实例代码

    Python获取时光网电影数据的实例代码

    这篇文章主要介绍了Python获取时光网电影数据,基本原理是先通过requests库,通过时光网自带的电影数据API接口,获取到指定的电影数据,本文结合示例代码给大家介绍的非常详细,需要的朋友可以参考下
    2022-09-09

最新评论