pandas read_excel()和to_excel()函数解析
前言
数据分析时候,需要将数据进行加载和存储,本文主要介绍和excel的交互。
read_excel()
加载函数为read_excel(),其具体参数如下。
read_excel(io, sheetname=0, header=0, skiprows=None, skip_footer=0, index_col=None,names=None, parse_cols=None, parse_dates=False,date_parser=None,na_values=None,thousands=None, convert_float=True, has_index_names=None, converters=None,dtype=None, true_values=None, false_values=None, engine=None, squeeze=False, **kwds)
常用参数解析:
- io : string, path object ; excel 路径。
- sheetname : string, int, mixed list of strings/ints, or None, default 0 返回多表使用sheetname=[0,1],若sheetname=None是返回全表 注意:int/string 返回的是dataframe,而none和list返回的是dict of dataframe
- header : int, list of ints, default 0 指定列名行,默认0,即取第一行,数据为列名行以下的数据 若数据不含列名,则设定 header = None
- skiprows : list-like,Rows to skip at the beginning,省略指定行数的数据
- skip_footer : int,default 0, 省略从尾部数的int行数据
- index_col : int, list of ints, default None指定列为索引列,也可以使用u”strings”
- names : array-like, default None, 指定列的名字。
数据源:
sheet1: ID NUM-1 NUM-2 NUM-3 36901 142 168 661 36902 78 521 602 36903 144 600 521 36904 95 457 468 36905 69 596 695 sheet2: ID NUM-1 NUM-2 NUM-3 36906 190 527 691 36907 101 403 470
(1)函数原型
basestation ="F://pythonBook_PyPDAM/data/test.xls" data = pd.read_excel(basestation) print data
输出:是一个dataframe
ID NUM-1 NUM-2 NUM-3 0 36901 142 168 661 1 36902 78 521 602 2 36903 144 600 521 3 36904 95 457 468 4 36905 69 596 695
(2) sheetname参数:返回多表使用sheetname=[0,1],若sheetname=None是返回全表 注意:int/string 返回的是dataframe,而none和list返回的是dict of dataframe
data_1 = pd.read_excel(basestation,sheetname=[0,1]) print data_1 print type(data_1)
输出:dict of dataframe
OrderedDict([(0, ID NUM-1 NUM-2 NUM-3 0 36901 142 168 661 1 36902 78 521 602 2 36903 144 600 521 3 36904 95 457 468 4 36905 69 596 695), (1, ID NUM-1 NUM-2 NUM-3 0 36906 190 527 691 1 36907 101 403 470)])
(3)header参数:指定列名行,默认0,即取第一行,数据为列名行以下的数据 若数据不含列名,则设定 header = None ,注意这里还有列名的一行。
data = pd.read_excel(basestation,header=None) print data 输出: 0 1 2 3 0 ID NUM-1 NUM-2 NUM-3 1 36901 142 168 661 2 36902 78 521 602 3 36903 144 600 521 4 36904 95 457 468 5 36905 69 596 695 data = pd.read_excel(basestation,header=[3]) print data 输出: 36903 144 600 521 0 36904 95 457 468 1 36905 69 596 695
(4) skiprows 参数:省略指定行数的数据
data = pd.read_excel(basestation,skiprows = [1]) print data 输出: ID NUM-1 NUM-2 NUM-3 0 36902 78 521 602 1 36903 144 600 521 2 36904 95 457 468 3 36905 69 596 695
(5)skip_footer参数:省略从尾部数的int行的数据
data = pd.read_excel(basestation, skip_footer=3) print data 输出: ID NUM-1 NUM-2 NUM-3 0 36901 142 168 661 1 36902 78 521 602
(6)index_col参数:指定列为索引列,也可以使用u”strings”
data = pd.read_excel(basestation, index_col="NUM-3") print data 输出: ID NUM-1 NUM-2 NUM-3 661 36901 142 168 602 36902 78 521 521 36903 144 600 468 36904 95 457 695 36905 69 596
(7)names参数: 指定列的名字。
data = pd.read_excel(basestation,names=["a","b","c","e"]) print data a b c e 0 36901 142 168 661 1 36902 78 521 602 2 36903 144 600 521 3 36904 95 457 468 4 36905 69 596 695
具体参数如下:
>>> print help(pandas.read_excel) Help on function read_excel in module pandas.io.excel: read_excel(io, sheetname=0, header=0, skiprows=None, skip_footer=0, index_col=None, names=None, parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None, dtype=None, true_values=None, false_values=None, engine=None, squeeze=False, **kwds) Read an Excel table into a pandas DataFrame Parameters ---------- io : string, path object (pathlib.Path or py._path.local.LocalPath), file-like object, pandas ExcelFile, or xlrd workbook. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/workbook.xlsx sheetname : string, int, mixed list of strings/ints, or None, default 0 Strings are used for sheet names, Integers are used in zero-indexed sheet positions. Lists of strings/integers are used to request multiple sheets. Specify None to get all sheets. str|int -> DataFrame is returned. list|None -> Dict of DataFrames is returned, with keys representing sheets. Available Cases * Defaults to 0 -> 1st sheet as a DataFrame * 1 -> 2nd sheet as a DataFrame * "Sheet1" -> 1st sheet as a DataFrame * [0,1,"Sheet5"] -> 1st, 2nd & 5th sheet as a dictionary of DataFrames * None -> All sheets as a dictionary of DataFrames header : int, list of ints, default 0 Row (0-indexed) to use for the column labels of the parsed DataFrame. If a list of integers is passed those row positions will be combined into a ``MultiIndex`` skiprows : list-like Rows to skip at the beginning (0-indexed) skip_footer : int, default 0 Rows at the end to skip (0-indexed) index_col : int, list of ints, default None Column (0-indexed) to use as the row labels of the DataFrame. Pass None if there is no such column. If a list is passed, those columns will be combined into a ``MultiIndex``. If a subset of data is selected with ``parse_cols``, index_col is based on the subset. names : array-like, default None List of column names to use. If file contains no header row, then you should explicitly pass header=None converters : dict, default None Dict of functions for converting values in certain columns. Keys can either be integers or column labels, values are functions that take one input argument, the Excel cell content, and return the transformed content. dtype : Type name or dict of column -> type, default None Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} Use `object` to preserve data as stored in Excel and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion. .. versionadded:: 0.20.0 true_values : list, default None Values to consider as True .. versionadded:: 0.19.0 false_values : list, default None Values to consider as False .. versionadded:: 0.19.0 parse_cols : int or list, default None * If None then parse all columns, * If int then indicates last column to be parsed * If list of ints then indicates list of column numbers to be parsed * If string then indicates comma separated list of Excel column letters and column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of both sides. squeeze : boolean, default False If the parsed data only contains one column then return a Series na_values : scalar, str, list-like, or dict, default None Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: '', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan', '1.#IND', '1.#QNAN', 'N/A', 'NA', 'NULL', 'NaN', 'nan'. thousands : str, default None Thousands separator for parsing string columns to numeric. Note that this parameter is only necessary for columns stored as TEXT in Excel, any numeric columns will automatically be parsed, regardless of display format. keep_default_na : bool, default True If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they're appended to. verbose : boolean, default False Indicate number of NA values placed in non-numeric columns engine: string, default None If io is not a buffer or path, this must be set to identify io. Acceptable values are None or xlrd convert_float : boolean, default True convert integral floats to int (i.e., 1.0 --> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally has_index_names : boolean, default None DEPRECATED: for version 0.17+ index names will be automatically inferred based on index_col. To read Excel output from 0.16.2 and prior that had saved index names, use True. Returns
to_excel()
存储函数为pd.DataFrame.to_excel(),注意,必须是DataFrame写入excel, 即Write DataFrame to an excel sheet。其具体参数如下:
to_excel(self, excel_writer, sheet_name='Sheet1', na_rep='', float_format=None,columns=None, header=True, index=True, index_label=None,startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep='inf', verbose=True, freeze_panes=None)
常用参数解析
- - excel_writer : string or ExcelWriter object File path or existing ExcelWriter目标路径
- - sheet_name : string, default ‘Sheet1' Name of sheet which will contain DataFrame,填充excel的第几页
- - na_rep : string, default ”,Missing data representation 缺失值填充
- - float_format : string, default None Format string for floating point numbers
- - columns : sequence, optional,Columns to write 选择输出的的列。
- - header : boolean or list of string, default True Write out column names. If a list of string is given it is assumed to be aliases for the column names
- - index : boolean, default True,Write row names (index)
- - index_label : string or sequence, default None, Column label for index column(s) if desired. If None is given, andheader and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.
- - startrow :upper left cell row to dump data frame
- - startcol :upper left cell column to dump data frame
- - engine : string, default None ,write engine to use - you can also set this via the options,io.excel.xlsx.writer, io.excel.xls.writer, andio.excel.xlsm.writer.
- - merge_cells : boolean, default True Write MultiIndex and Hierarchical Rows as merged cells.
- - encoding: string, default None encoding of the resulting excel file. Only necessary for xlwt,other writers support unicode natively.
- - inf_rep : string, default ‘inf' Representation for infinity (there is no native representation for infinity in Excel)
- - freeze_panes : tuple of integer (length 2), default None Specifies the one-based bottommost row and rightmost column that is to be frozen
数据源:
ID NUM-1 NUM-2 NUM-3 0 36901 142 168 661 1 36902 78 521 602 2 36903 144 600 521 3 36904 95 457 468 4 36905 69 596 695 5 36906 165 453 加载数据: basestation ="F://python/data/test.xls" basestation_end ="F://python/data/test_end.xls" data = pd.read_excel(basestation)
(1)参数excel_writer,输出路径。
data.to_excel(basestation_end) 输出: ID NUM-1 NUM-2 NUM-3 0 36901 142 168 661 1 36902 78 521 602 2 36903 144 600 521 3 36904 95 457 468 4 36905 69 596 695 5 36906 165 453
(2)sheet_name,将数据存储在excel的那个sheet页面。
data.to_excel(basestation_end,sheet_name="sheet2")
(3)na_rep,缺失值填充
data.to_excel(basestation_end,na_rep="NULL") 输出: ID NUM-1 NUM-2 NUM-3 0 36901 142 168 661 1 36902 78 521 602 2 36903 144 600 521 3 36904 95 457 468 4 36905 69 596 695 5 36906 165 453 NULL
(4) colums参数: sequence, optional,Columns to write 选择输出的的列。
data.to_excel(basestation_end,columns=["ID"]) 输出 ID 0 36901 1 36902 2 36903 3 36904 4 36905 5 36906
(5)header 参数: boolean or list of string,默认为True,可以用list命名列的名字。header = False 则不输出题头。
data.to_excel(basestation_end,header=["a","b","c","d"]) 输出: a b c d 0 36901 142 168 661 1 36902 78 521 602 2 36903 144 600 521 3 36904 95 457 468 4 36905 69 596 695 5 36906 165 453 data.to_excel(basestation_end,header=False,columns=["ID"]) header = False 则不输出题头 输出: 0 36901 1 36902 2 36903 3 36904 4 36905 5 36906
(6)index : boolean, default True Write row names (index)
默认为True,显示index,当index=False 则不显示行索引(名字)。
index_label : string or sequence, default None
设置索引列的列名。
data.to_excel(basestation_end,index=False) 输出: ID NUM-1 NUM-2 NUM-3 36901 142 168 661 36902 78 521 602 36903 144 600 521 36904 95 457 468 36905 69 596 695 36906 165 453 data.to_excel(basestation_end,index_label=["f"]) 输出: f ID NUM-1 NUM-2 NUM-3 0 36901 142 168 661 1 36902 78 521 602 2 36903 144 600 521 3 36904 95 457 468 4 36905 69 596 695 5 36906 165 453
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
相关文章
Python保存dict字典类型数据到Mysql并自动创建表与列
这篇文章主要介绍了Python保存dict字典类型数据到Mysql并自动创建表与列,字典是另一种可变容器模型,且可存储任意类型对象,想了解更多内容的小伙伴可以和小编一起进入下面文章学习更多内容,希望对你有所帮助2022-02-02
最新评论