Python2比较当前图片跟图库哪个图片相似的方法示例
更新时间:2019年09月28日 11:09:38 作者:lbxx
这篇文章主要介绍了Python2比较当前图片跟图库哪个图片相似的方法,结合实例形式分析了Python文件目录操作及图形运算相关使用技巧,需要的朋友可以参考下
本文实例讲述了Python2比较当前图片跟图库哪个图片相似的方法。分享给大家供大家参考,具体如下:
# -*- coding: utf-8 -*- ''' Created on 2019年7月22日 ''' from selenium import webdriver from time import sleep from PIL import Image import random import os import cv2 import numpy as np url ="URL" driver = webdriver.Chrome() driver.implicitly_wait(10) driver.maximize_window() driver.get(url) sleep(2) driver.save_screenshot("E:/test/das.png") p1=r'E:/test/das1.png' p2=r'E:/test/das2.png' p3=r'E:/test/das3.png' p4=r'E:/test/das4.png' element = driver.find_element_by_id("imgcode") left = element.location['x'] top = element.location['y'] right = element.location['x'] + element.size['width'] bottom = element.location['y'] + element.size['height'] im1 = Image.open(r'E:/test/das.png') im1 = im1.crop((left, top, right, bottom)) im1.save(r"E:/test/dascode.png") img = Image.open("E:/test/dascode.png") cropped = img.crop((0, 0, 25, 30)) # (left, upper, right, lower) cropped.save(p1) cropped = img.crop((25, 0, 50, 30)) # (left, upper, right, lower) cropped.save(p2) cropped = img.crop((50, 0, 75, 30)) # (left, upper, right, lower) cropped.save(p3) cropped = img.crop((75, 0, 96, 30)) # (left, upper, right, lower) cropped.save(p4) def getGray(image_file): tmpls=[] for h in range(0, image_file.size[1]):#h for w in range(0, image_file.size[0]):#w tmpls.append( image_file.getpixel((w,h)) ) return tmpls def getAvg(ls):#获取平均灰度值 return sum(ls)/len(ls) def aHash(fne): image_file = Image.open(fne) # 打开 image_file=image_file.resize((35,35))#重置图片大小我12px X 12px image_file=image_file.convert("L")#转256灰度图 Grayls=getGray(image_file)#灰度集合 avg=getAvg(Grayls)#灰度平均值 bitls=''#接收获取0或1 for h in range(1, image_file.size[1]-1):#h for w in range(1, image_file.size[0]-1):#w if image_file.getpixel((w,h))>=avg:#像素的值比较平均值 大于记为1 小于记为0 bitls=bitls+'1' else: bitls=bitls+'0' return bitls def getMH(i1,i2): a=aHash(i1) b=aHash(i2) dist = 0; for i in range(0,len(a)): if a[i]==b[i]: dist=dist+1 return dist def match(a,rootdir): list = os.listdir(rootdir) li=[] for i in list: re=getMH(a,rootdir+"/"+i) li.append(re) b=str(li.index(max(li))+1) a=li.index(max(li)) return b,list[a].split(".")[0] a=match('E:/test/das4.png',"E:/test/pic4") print a
另附参考的
# -*- coding: utf-8 -*- ''' Created on 2018年5月17日 ''' from selenium import webdriver from PIL import Image import requests import time import base64 import base64 import requests from urllib import urlencode import json # requests.packages.urllib3.disable_warnings() import datetime from time import strftime from time import sleep from PIL import Image # import pytesseract from PIL import Image import os import cv2 from numpy import average, dot, linalg import heapq import collections from lib.readConfig import Readconfig conf=Readconfig() filedir=conf.getConfigValue("filedir") def getGray(image_file): tmpls=[] for h in range(0, image_file.size[1]):#h for w in range(0, image_file.size[0]):#w tmpls.append( image_file.getpixel((w,h)) ) return tmpls def getAvg(ls):#获取平均灰度值 return sum(ls)/len(ls) def getMH(i1,i2): a=getImgHash(i1) b=getImgHash(i2) dist = 0; for i in range(0,len(a)): if a[i]==b[i]: dist=dist+1 return dist def getImgHash(fne): image_file = Image.open(fne) # 打开 image_file=image_file.resize((35,35))#重置图片大小我12px X 12px image_file=image_file.convert("L")#转256灰度图 Grayls=getGray(image_file)#灰度集合 avg=getAvg(Grayls)#灰度平均值 bitls=''#接收获取0或1 for h in range(1, image_file.size[1]-1):#h for w in range(1, image_file.size[0]-1):#w if image_file.getpixel((w,h))>=avg:#像素的值比较平均值 大于记为1 小于记为0 bitls=bitls+'1' else: bitls=bitls+'0' return bitls def match1(a,rootdir): list = os.listdir(rootdir) li=[] for i in list: # print rootdir+"/"+i re=getMH(a,rootdir+"/"+i) li.append(re) # print li # print max(li) b=str(li.index(max(li))+1) return b def g_code(pic): dic={"1":"2","2":"3","3":"4","4":"5","5":"6","6":"7","7":"8","8":"9", "9":"a","10":"b","11":"c","12":"d","13":"e","14":"f","15":"g","16":"h", "17":"i","18":"j","19":"k","20":"m","21":"n","22":"p","23":"q","24":"r", "25":"s","26":"t","27":"u","28":"v","29":"w","30":"x","31":"y","32":"z"} img = Image.open(pic) a=img.size[0] b=img.size[1] p1=filedir+r'eos_tdym/lib/pic/das1.png' p2=filedir+r'eos_tdym/lib/pic/das2.png' p3=filedir+r'eos_tdym/lib/pic/das3.png' p4=filedir+r'eos_tdym/lib/pic/das4.png' dir1=filedir+r'eos_tdym/lib/pic/pic1' dir2=filedir+r'eos_tdym/lib/pic/pic2' dir3=filedir+r'eos_tdym/lib/pic/pic3' dir4=filedir+r'eos_tdym/lib/pic/pic4' cropped = img.crop((0, 0, 25, 30)) # (left, upper, right, lower) cropped.save(p1) cropped = img.crop((25, 0, 50, 30)) # (left, upper, right, lower) cropped.save(p2) cropped = img.crop((50, 0, 75, 30)) # (left, upper, right, lower) cropped.save(p3) cropped = img.crop((75, 0, 96, 30)) # (left, upper, right, lower) cropped.save(p4) re1=str(match1(p1,dir1)) re2=str(match1(p2,dir2)) re3=str(match1(p3,dir3)) re4=str(match1(p4,dir4)) print u"获取到验证码:"+dic[re1]+dic[re2]+dic[re3]+dic[re4] return dic[re1],dic[re2],dic[re3],dic[re4] def g_code1(pic): dic={"1":"2","2":"3","3":"4","4":"5","5":"6","6":"7","7":"8","8":"9", "9":"a","10":"b","11":"c","12":"d","13":"e","14":"f","15":"g","16":"h", "17":"i","18":"j","19":"k","20":"m","21":"n","22":"p","23":"q","24":"r", "25":"s","26":"t","27":"u","28":"v","29":"w","30":"x","31":"y","32":"z"} img = Image.open(pic) a=img.size[0] b=img.size[1] p1="pic5/das1.png" p2="pic5/das2.png" p3="pic5/das3.png" p4="pic5/das4.png" dir1="pic1" dir2="pic2" dir3="pic3" dir4="pic4" cropped = img.crop((0, 0, 25, 30)) # (left, upper, right, lower) cropped.save(p1) cropped = img.crop((25, 0, 50, 30)) # (left, upper, right, lower) cropped.save(p2) cropped = img.crop((50, 0, 75, 30)) # (left, upper, right, lower) cropped.save(p3) cropped = img.crop((75, 0, 96, 30)) # (left, upper, right, lower) cropped.save(p4) re1=match1(p1,dir1) re2=match1(p2,dir2) re3=match1(p3,dir3) re4=match1(p4,dir4) print dic[re1] print dic[re2] print dic[re3] print dic[re4] return dic[re1],dic[re2],dic[re3],dic[re4]
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python图片操作技巧总结》、《Python数据结构与算法教程》、《Python Socket编程技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。
相关文章
win与linux系统中python requests 安装
requests是Python的一个HTTP客户端库,跟urllib,urllib2类似,今天我们主要来谈谈win与linux系统中python requests的安装方法以及使用指南2016-12-12
最新评论