FFT快速傅里叶变换的python实现过程解析

 更新时间:2019年10月21日 16:55:37   作者:思念殇千寻  
这篇文章主要介绍了FFT快速傅里叶变换的python实现过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

FFT是DFT的高效算法,能够将时域信号转化到频域上,下面记录下一段用python实现的FFT代码。

# encoding=utf-8

import numpy as np
import pylab as pl # 导入和matplotlib同时安装的作图库pylab


sampling_rate = 8000 # 采样频率8000Hz
fft_size = 512  # 采样点512,就是说以8000Hz的速度采512个点,我们获得的数据只有这512个点的对应时刻和此时的信号值。
t = np.linspace(0, 1, sampling_rate)  # 截取一段时间,截取是任意的,这里取了0~1秒的一段时间。

x = np.sin(2*np.pi*156.25*t) + 2*np.sin(2*np.pi*234.375*t) # 输入信号序列,人工生成了一段信号序列,范围在0~1秒
xs = x[:fft_size]  # 由上所述,我们只采样了512个点,所以我们只获得了前512个点的数据
xf = np.fft.rfft(xs)/fft_size # 调用np.fft的函数rfft(用于实值信号fft),产生长度为fft_size/2+1的一个复数向量,分别表示从0Hz~4000Hz的部分,这里之所以是4000Hz是因为Nyquist定理,采样频率8000Hz,则能恢复带宽为4000Hz的信号。最后/fft_size是为了正确显示波形能量

freqs = np.linspace(0, sampling_rate//2, fft_size//2 + 1) # 由上可知,我们得到了数据,现在产生0~4000Hz的频率向量,方便作图
xfp = 20*np.log10(np.clip(np.abs(xf), 1e-20, 1e1000)) # 防止幅值为0,先利用clip剪裁幅度,再化成分贝

pl.figure(figsize=(8, 4)) # 生成画布
pl.subplot(211) # 生成子图,211的意思是将画布分成两行一列,自己居上面。
pl.plot(t[:fft_size], xs) # 对真实波形绘图
pl.xlabel(u"time(s)")
pl.title(u"The Wave and Spectrum of 156.25Hz and 234.375Hz")
pl.subplot(212) # 同理
pl.plot(freqs, xfp) # 对频率和幅值作图,xlabel是频率Hz,ylabel是dB
pl.xlabel(u"Hz")
pl.subplots_adjust(hspace=0.4) # 调节绘图参数
pl.show()

代码进行了详细标注。有一个小细节是FFT对于取样时间有要求。N点FFT进行精确频谱分析的要求是N个取样点包含整数个取样对象的波形。因此N点FFT能够完美计算频谱,对取样对象的要求是n*Fs/N(n*采样频率/FFT长度)在本例中Fs = 8000Hz,N=512 base_freq=15.625Hz 所以本例中给出了频率为156.25Hz(n=10)和234.375Hz(n=15)做例子。

效果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • 使用python实现unix2dos和dos2unix命令的例子

    使用python实现unix2dos和dos2unix命令的例子

    今天小编就为大家分享一篇使用python实现unix2dos和dos2unix命令的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • 基于python的MD5脚本开发思路

    基于python的MD5脚本开发思路

    这篇文章主要介绍了基于python的MD5脚本,通过 string模块自动生成字典,使用permutations()函数,对字典进行全排列,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下
    2022-03-03
  • 如何轻松实现Python数组降维?

    如何轻松实现Python数组降维?

    欢迎来到Python数组降维实现方法的指南!这里,你将探索一种神秘又强大的编程技术,想要提升你的Python编程技巧吗?别犹豫,跟我一起深入探索吧!
    2024-01-01
  • Python中参数打包和解包的实现

    Python中参数打包和解包的实现

    在Python中,打包和解包参数是一种操作方式,可以将多个参数打包成一个元组或字典,也可以将一个元组或字典解包成多个参数,本文就来介绍一下如何使用
    2023-09-09
  • 简单了解python的break、continue、pass

    简单了解python的break、continue、pass

    这篇文章主要介绍了简单了解python的break、continue、pass,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07
  • Python使用Gzip解压的示例详解

    Python使用Gzip解压的示例详解

    Python 中构建了许多用于压缩和解压缩目的的库,本文为大家介绍的Gzip库就是一种流行的数据压缩工具,下面我们就来看看如何使用 gzip 解压缩来解压缩压缩内容吧
    2023-11-11
  • Python catplot函数自定义颜色的方法

    Python catplot函数自定义颜色的方法

    catplot() 函数是 Seaborn 中一个非常有用的函数,它可以绘制分类变量的图形,并可以根据另一个或多个变量进行分组,这篇文章主要介绍了Python catplot函数自定义颜色的方法,需要的朋友可以参考下
    2023-03-03
  • pytorch如何使用训练好的模型预测新数据

    pytorch如何使用训练好的模型预测新数据

    这篇文章主要介绍了pytorch如何使用训练好的模型预测新数据问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-06-06
  • Python 冒泡,选择,插入排序使用实例

    Python 冒泡,选择,插入排序使用实例

    这里简单介绍了下Python中冒泡,选择,插入排序的使用方法,推荐给需要的小伙伴们参考下。
    2015-02-02
  • python如何实现数据的线性拟合

    python如何实现数据的线性拟合

    这篇文章主要为大家详细介绍了python如何实现数据的线性拟合,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-07-07

最新评论