Pandas DataFrame中的tuple元素遍历的实现

 更新时间:2019年10月23日 11:47:14   作者:小晓酱  
这篇文章主要介绍了Pandas DataFrame中的tuple元素遍历的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

pandas中遍历dataframe的每一个元素

假如有一个需求场景需要遍历一个csv或excel中的每一个元素,判断这个元素是否含有某个关键字

那么可以用python的pandas库来实现。

方法一:

pandas的dataframe有一个很好用的函数applymap,它可以把某个函数应用到dataframe的每一个元素上,而且比常规的for循环去遍历每个元素要快很多。如下是相关代码:

import pandas as pd
data = [["str","ewt","earw"],["agter","awetg","aeorgh"]]
dataframe1 = pd.DataFrame(data=data,columns=["name1","name2","name3"])
print(dataframe1)
bool_array = dataframe1.applymap(lambda x:"w" in x)
out_array = dataframe1[bool_array]
print(out_array)

>>
  name1 name2  name3
0  str  ewt  earw
1 agter awetg aeorgh

 name1 name2 name3
0  NaN  ewt earw
1  NaN awetg  NaN

代码中,bool_array为一个逻辑矩阵,满足条件元素的位置为true,否则为false。然后通过逻辑矩阵去索引dataframe1,就可以得出满足条件的元素。

方法二:

第一种方法是一次性遍历每个元素,这样不好分column去处理,那换一种方式可以每次遍历一列

#接上面代码
file_columns = dataframe1.columns.tolist()
for column in file_columns:
  bool_index = dataframe1[column].str.contains("w")
  filter_data = dataframe1[column][bool_index] 
  print(filter_data)

>>
Series([], Name: name1, dtype: object)
0   ewt
1  awetg
Name: name2, dtype: object
0  earw
Name: name3, dtype: object

代码种 Series.str.contains 是 Series 才有的一个操作。另外,filter_data只输出每一列中满足条件的元素,更方便下一步的操作。

简单说明:

针对pandas的dataframe和series,有强大的高阶函数:apply,applymap和map函数等,它们比简单的for循环要快很多,善用这些高阶函数会让你事半功倍。

Pandas DataFrame中的tuple元素遍历

在用Word2vec计算出词语的相似度之后,得到的DataFrame格式如下:

1. 索引(index)为输入的关键词,从第0列开始为相似度最高的词语和它的余弦相似度。

2. 这个DataFrame 中每一个元素,比如(通话, 0.21321064233779907)的格式为tuple。

输入数据:

                            0                           1 
银行  (通话, 0.21321064233779907)   (钻石卡, 0.1743093729019165)  
手机  (想要, 0.21755412220954895)   (长时间, 0.16086308658123016)

期望输出的数据

1. 只取相似度最高的词语,丢弃余弦相似度。

2. 把关键词从索引中取出来,单独作为1列。

期望输出:

 核心关键词   0    1 
0    银行  通话  钻石卡 
1    手机  想要  长时间

Python 实现的代码:

主要使用1)applymap,2)lambda,3)reset_index,4)rename

import pandas as pd
 
s_df_untuple = s_df.applymap(lambda x: x[0]) # 对dataframe中所有元素,只取tuple中的第0个
s_df_untuple = s_df_untuple.reset_index() # 把索引变为单独的一列
s_df_untuple.rename(columns={"index": '核心关键词'}, inplace=True) # 对索引这一列重命名

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • Python使用scapy模块发包收包

    Python使用scapy模块发包收包

    这篇文章主要介绍了Python如何使用scapy模块发包收包,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下
    2021-05-05
  • 解决python logging遇到的坑 日志重复打印问题

    解决python logging遇到的坑 日志重复打印问题

    这篇文章主要介绍了解决python logging遇到的坑 日志重复打印问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • Pycharm 2019 破解激活方法图文详解

    Pycharm 2019 破解激活方法图文详解

    这篇文章主要介绍了Pycharm 2019 破解激活方法图文详解,本文图文并茂给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-10-10
  • 使用python实现tcp自动重连

    使用python实现tcp自动重连

    下面小编就为大家带来一篇使用python实现tcp自动重连实现方法。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。
    2017-07-07
  • Python根据服务获取端口号的方法

    Python根据服务获取端口号的方法

    这篇文章主要介绍了Python根据服务获取端口号,文中给大家提到了linux查看端口开启端口的方法,需要的朋友可以参考下
    2019-09-09
  • Python爬虫回测股票的实例讲解

    Python爬虫回测股票的实例讲解

    在本篇文章里小编给大家整理的是一篇关于Python爬虫回测股票的实例讲解内容,有兴趣的朋友们可以学习下。
    2021-01-01
  • python实现LRU热点缓存及原理

    python实现LRU热点缓存及原理

    LRU算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。 。这篇文章主要介绍了python实现LRU热点缓存,需要的朋友可以参考下
    2019-10-10
  • python基础面试题整理

    python基础面试题整理

    这篇文章主要介绍了python基础面试题整理,本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下
    2021-08-08
  • 详解python持久化文件读写

    详解python持久化文件读写

    这篇文章主要介绍了python持久化文件读写,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-04-04
  • python获取网页状态码示例

    python获取网页状态码示例

    这篇文章主要介绍了python获取网页状态码示例,只需要2行代码就可实现想要的功能,需要的朋友可以参考下
    2014-03-03

最新评论