基于python plotly交互式图表大全

 更新时间:2019年12月07日 11:16:29   作者:会spark的篮球少年  
今天小编就为大家分享一篇基于python plotly交互式图表大全,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

plotly可以制作交互式图表,直接上代码:

import plotly.offline as py
from plotly.graph_objs import Scatter, Layout
import plotly.graph_objs as go
py.init_notebook_mode(connected=True)
import pandas as pd
import numpy as np

In [412]:

#读取数据
df=pd.read_csv('seaborn.csv',sep=',',encoding='utf-8',index_col=0)
#展示数据
df.head()
Out[412]:
Name Type 1 Type 2 Total HP Attack Defense Sp. Atk Sp. Def Speed Stage Legendary
#
1 Bulbasaur Grass Poison 318 45 49 49 65 65 45 1 False
2 Ivysaur Grass Poison 405 60 62 63 80 80 60 2 False
3 Venusaur Grass Poison 525 80 82 83 100 100 80 3 False
4 Charmander Fire NaN 309 39 52 43 60 50 65 1 False
5 Charmeleon Fire NaN 405 58 64 58 80 65 80 2 False

In [413]:

#plotly折线图,trace就代表折现的条数
trace1=go.Scatter(x=df['Attack'],y=df['Defense'])
trace1=go.Scatter(x=[1,2,3,4,5],y=[2,1,3,5,2])
trace2=go.Scatter(x=[1,2,3,4,5],y=[2,1,4,6,7])
py.iplot([trace1,trace2])

#填充区域
trace1=go.Scatter(x=[1,2,3,4,5],y=[2,1,3,5,2],fill="tonexty",fillcolor="#FF0")
py.iplot([trace1])

# 散点图
trace1=go.Scatter(x=[1,2,3,4,5],y=[2,1,3,5,2],mode='markers')
trace1=go.Scatter(x=df['Attack'],y=df['Defense'],mode='markers')
py.iplot([trace1],filename='basic-scatter')

#气泡图
x=df['Attack']
y=df['Defense']
colors = np.random.rand(len(x))#set color equal to a variable
sz =df['Defense']
fig = go.Figure()
fig.add_scatter(x=x,y=y,mode='markers',marker={'size': sz,'color': colors,'opacity': 0.7,'colorscale': 'Viridis','showscale': True})
py.iplot(fig)

#bar 柱状图
df1=df[['Name','Defense']].sort_values(['Defense'],ascending=[0])
data = [go.Bar(x=df1['Name'],y=df1['Defense'])]
py.iplot(data, filename='jupyter-basic_bar')

#组合bar  group
trace1 = go.Bar(x=['giraffes', 'orangutans', 'monkeys'],y=[20, 14, 23],name='SF Zoo')
trace2 = go.Bar(x=['giraffes', 'orangutans', 'monkeys'],y=[12, 18, 29],name='LA Zoo')
data = [trace1, trace2]
layout = go.Layout( barmode='group')
fig = go.Figure(data=data, layout=layout)
py.iplot(fig, filename='grouped-bar')

#组合bar  gstack上下组合
trace1 = go.Bar(x=['giraffes', 'orangutans', 'monkeys'],y=[20, 14, 23],name='SF Zoo')
trace2 = go.Bar(x=['giraffes', 'orangutans', 'monkeys'],y=[12, 18, 29],name='LA Zoo',text=[12, 18, 29],textposition = 'auto')
data = [trace1, trace2]
layout = go.Layout( barmode='stack')
fig = go.Figure(data=data, layout=layout)
py.iplot(fig, filename='grouped-bar')

#饼图
fig = {
 "data": [
  {
   "values": df['Defense'][0:3],
   "labels": df['Name'][0:3],
   "domain": {"x": [0,1]},
   "name": "GHG Emissions",
   "hoverinfo":"label+percent+name",
   "hole": .4,
   "type": "pie"
  }
    ],
  
 "layout": {
    "title":"Global Emissions 1990-2011",
    "annotations": [
      {
        "font": {"size": 20},
        "showarrow": False,
        "text": "GHG",
        "x": 0.5,
        "y": 0.5
      }
            ]
      }
  }
py.iplot(fig, filename='donut')

# Learn about API authentication here: https://plot.ly/pandas/getting-started
# Find your api_key here: https://plot.ly/settings/api
#雷达图
data = [
  go.Scatterpolar(
   r = [39, 28, 8, 7, 28, 39],
   theta = ['A','B','C', 'D', 'E', 'A'],
   fill = 'toself',
   name = 'Group A'
  ),
  go.Scatterpolar(
   r = [1.5, 10, 39, 31, 15, 1.5],
   theta = ['A','B','C', 'D', 'E', 'A'],
   fill = 'toself',
   name = 'Group B'
  )
]
 
layout = go.Layout(
 polar = dict(
  radialaxis = dict(
   visible = True,
   range = [0, 50]
  )
 ),
 showlegend = False
)
 
fig = go.Figure(data=data, layout=layout)
py.iplot(fig, filename = "radar/multiple")

#box 箱子图
df_box=df[['HP','Attack','Defense','Speed']]
data = []
for col in df_box.columns:
  data.append(go.Box(y=df_box[col], name=col, showlegend=True ) )
#data.append( go.Scatter(x= df_box.columns, y=df.mean(), mode='lines', name='mean' ) )
py.iplot(data, filename='pandas-box-plot')

#箱子图加平均线
df_box=df[['HP','Attack','Defense','Speed']]
data = []
for col in df_box.columns:
  data.append(go.Box(y=df_box[col], name=col, showlegend=True) )
data.append( go.Scatter(x= df_box.columns, y=df.mean(), mode='lines', name='mean' ) )
py.iplot(data, filename='pandas-box-plot')

#Basic Horizontal Bar Chart 条形图 plotly条形图
df_hb=df[['Name','Attack','Defense','Speed']][0:5].sort_values(['Attack'],ascending=[1])
data = [
  go.Bar(
    y=df_hb['Name'], # assign x as the dataframe column 'x'
    x=df_hb['Attack'],
    orientation='h',
    text=df_hb['Attack'],
    textposition = 'auto'
  )
]
py.iplot(data, filename='pandas-horizontal-bar')

#直方图Histogram
data = [go.Histogram(x=df['Attack'])]
py.iplot(data, filename='basic histogram')

#distplot
import plotly.figure_factory as ff 
hist_data =[df['Defense']]
group_labels = ['distplot']
fig = ff.create_distplot(hist_data, group_labels)
# Add title
fig['layout'].update(title='Hist and Rug Plot',xaxis=dict(range=[0,200]))
py.iplot(fig, filename='Basic Distplot')

# Add histogram data
x1 = np.random.randn(200)-2 
x2 = np.random.randn(200) 
x3 = np.random.randn(200)+2 
x4 = np.random.randn(200)+4 
 
# Group data together
hist_data = [x1, x2, x3, x4]
group_labels = ['Group 1', 'Group 2', 'Group 3', 'Group 4']
# Create distplot with custom bin_size
fig = ff.create_distplot(hist_data, group_labels,)
# Plot!
py.iplot(fig, filename='Distplot with Multiple Datasets')

好了,以上就是我研究的plotly,欢迎朋友们评论,补充,一起学习!

以上这篇基于python plotly交互式图表大全就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python新手入门最容易犯的错误总结

    Python新手入门最容易犯的错误总结

    这篇文章主要总结了一些关于Python新手入门最容易犯的错误,希望通过学习本文总结的十二点易犯错误点,能够给新手们带来一定的帮助,需要的朋友可以参考学习,下面来一起看看吧。
    2017-04-04
  • 原生python实现knn分类算法

    原生python实现knn分类算法

    这篇文章主要介绍了原生python实现knn分类算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-10-10
  • Flask中Cookie和Session理解与作用介绍

    Flask中Cookie和Session理解与作用介绍

    Flask是一个使用 Python 编写的轻量级 Web 应用框架。其 WSGI 工具箱采用 Werkzeug ,模板引擎则使用 Jinja2 。Flask使用 BSD 授权。Flask也被称为 “microframework” ,因为它使用简单的核心,用 extension 增加其他功能,Flask中Cookie和Session有什么区别呢
    2022-10-10
  • Pandas数据分析-pandas数据框的多层索引

    Pandas数据分析-pandas数据框的多层索引

    这篇文章主要介绍了Pandas数据分析-pandas数据框的多层索引,pandas数据框针对高维数据,也有多层索引的办法去应对具体详细的内容介绍需要的小伙伴可以参考一下
    2022-08-08
  • 浅谈Django学习migrate和makemigrations的差别

    浅谈Django学习migrate和makemigrations的差别

    这篇文章主要介绍了浅谈Django学习migrate和makemigrations的差别,具有一定借鉴价值,需要的朋友可以参考下
    2018-01-01
  • python中3种等待元素出现的方法总结

    python中3种等待元素出现的方法总结

    发现太多人不会用等待了,小编今天实在是忍不住要给大家讲讲等待的必要性,下面这篇文章主要给大家介绍了关于python中3种等待元素出现的方法,需要的朋友可以参考下
    2022-03-03
  • VTK与Python实现机械臂三维模型可视化详解

    VTK与Python实现机械臂三维模型可视化详解

    这篇文章主要介绍了VTK与Python实现机械臂三维模型可视化详解,具有一定借鉴价值,需要的朋友可以参考下。
    2017-12-12
  • Python基础教程之内置函数locals()和globals()用法分析

    Python基础教程之内置函数locals()和globals()用法分析

    这篇文章主要介绍了Python基础教程之内置函数locals()和globals()用法,结合实例形式分析了locals()和globals()函数的功能、使用方法及相关操作注意事项,需要的朋友可以参考下
    2018-03-03
  • Python实现注册登录功能

    Python实现注册登录功能

    这篇文章主要为大家详细介绍了Python实现注册登录功能,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-02-02
  • Python使用tkinter模块实现GUI界面的学生信息管理系统流程分步详解

    Python使用tkinter模块实现GUI界面的学生信息管理系统流程分步详解

    这篇文章主要为大家详细介绍了python实现简易学生信息管理系统,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2023-01-01

最新评论