opencv-python 提取sift特征并匹配的实例

 更新时间:2019年12月09日 09:57:46   作者:Yan456jie  
今天小编就为大家分享一篇opencv-python 提取sift特征并匹配的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

我就废话不多说,直接上代码吧!

# -*- coding: utf-8 -*-
import cv2
import numpy as np
from find_obj import filter_matches,explore_match
from matplotlib import pyplot as plt
 
def getSift():
  '''
  得到并查看sift特征
  '''
  img_path1 = '../../data/home.jpg'
  #读取图像
  img = cv2.imread(img_path1)
  #转换为灰度图
  gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  #创建sift的类
  sift = cv2.SIFT()
  #在图像中找到关键点 也可以一步计算#kp, des = sift.detectAndCompute
  kp = sift.detect(gray,None)
  print type(kp),type(kp[0])
  #Keypoint数据类型分析 http://www.cnblogs.com/cj695/p/4041399.html
  print kp[0].pt
  #计算每个点的sift
  des = sift.compute(gray,kp)
  print type(kp),type(des)
  #des[0]为关键点的list,des[1]为特征向量的矩阵
  print type(des[0]), type(des[1])
  print des[0],des[1]
  #可以看出共有885个sift特征,每个特征为128维
  print des[1].shape
  #在灰度图中画出这些点
  img=cv2.drawKeypoints(gray,kp)
  #cv2.imwrite('sift_keypoints.jpg',img)
  plt.imshow(img),plt.show()
 
def matchSift():
  '''
  匹配sift特征
  '''
  img1 = cv2.imread('../../data/box.png', 0) # queryImage
  img2 = cv2.imread('../../data/box_in_scene.png', 0) # trainImage
  sift = cv2.SIFT()
  kp1, des1 = sift.detectAndCompute(img1, None)
  kp2, des2 = sift.detectAndCompute(img2, None)
  # 蛮力匹配算法,有两个参数,距离度量(L2(default),L1),是否交叉匹配(默认false)
  bf = cv2.BFMatcher()
  #返回k个最佳匹配
  matches = bf.knnMatch(des1, des2, k=2)
  # cv2.drawMatchesKnn expects list of lists as matches.
  #opencv2.4.13没有drawMatchesKnn函数,需要将opencv2.4.13\sources\samples\python2下的common.py和find_obj文件放入当前目录,并导入
  p1, p2, kp_pairs = filter_matches(kp1, kp2, matches)
  explore_match('find_obj', img1, img2, kp_pairs) # cv2 shows image
  cv2.waitKey()
  cv2.destroyAllWindows()
 
def matchSift3():
  '''
  匹配sift特征
  '''
  img1 = cv2.imread('../../data/box.png', 0) # queryImage
  img2 = cv2.imread('../../data/box_in_scene.png', 0) # trainImage
  sift = cv2.SIFT()
  kp1, des1 = sift.detectAndCompute(img1, None)
  kp2, des2 = sift.detectAndCompute(img2, None)
  # 蛮力匹配算法,有两个参数,距离度量(L2(default),L1),是否交叉匹配(默认false)
  bf = cv2.BFMatcher()
  #返回k个最佳匹配
  matches = bf.knnMatch(des1, des2, k=2)
  # cv2.drawMatchesKnn expects list of lists as matches.
  #opencv3.0有drawMatchesKnn函数
  # Apply ratio test
  # 比值测试,首先获取与A 距离最近的点B(最近)和C(次近),只有当B/C
  # 小于阈值时(0.75)才被认为是匹配,因为假设匹配是一一对应的,真正的匹配的理想距离为0
  good = []
  for m, n in matches:
    if m.distance < 0.75 * n.distance:
      good.append([m])
  img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, good[:10], None, flags=2)
  cv2.drawm
  plt.imshow(img3), plt.show()
 
matchSift()

以上这篇opencv-python 提取sift特征并匹配的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • 简单介绍Python中的try和finally和with方法

    简单介绍Python中的try和finally和with方法

    这篇文章主要介绍了Python中的try和finally和with方法,是Python学习当中的基础知识,需要的朋友可以参考下
    2015-05-05
  • python之文件的读写和文件目录以及文件夹的操作实现代码

    python之文件的读写和文件目录以及文件夹的操作实现代码

    这篇文章主要介绍了python之文件的读写和文件目录以及文件夹的操作实现代码,需要的朋友可以参考下
    2016-08-08
  • Django单元测试工具test client使用详解

    Django单元测试工具test client使用详解

    这篇文章主要介绍了Django单元测试工具test client使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-08-08
  • 关于Python中字符串的各种操作

    关于Python中字符串的各种操作

    本文将重点介绍Python字符串的各种常用方法,字符串是实际开发中经常用到的,所有熟练的掌握它的各种用法显得尤为重要。需要的朋友可以参考下面文章内容
    2021-09-09
  • 纯Python实现遗传算法详解

    纯Python实现遗传算法详解

    遗传算法(GA)是七十年代被霍兰德提出来的,那还是8086的时代,但在如今的3nm时代,仍然散发着经典的光辉,下面我们就来看看如何利用Python实现遗传算法吧
    2023-08-08
  • Python海象运算符的用法教程

    Python海象运算符的用法教程

    Python 海象运算符是在 PEP 572 中提出,并在 Python3.8 版本并入和发布。本文就来为大家详细讲讲Python海象运算符的用法,感兴趣的可以了解一下
    2022-07-07
  • 深入学习Python可变与不可变对象操作实例

    深入学习Python可变与不可变对象操作实例

    Python中的数据类型可以分为可变对象和不可变对象,了解它们之间的区别对于编写高效的Python代码至关重要,本文将详细介绍可变对象和不可变对象的概念,以及如何正确地使用它们来提高代码的性能和可读性
    2023-12-12
  • 浅谈python 调用open()打开文件时路径出错的原因

    浅谈python 调用open()打开文件时路径出错的原因

    这篇文章主要介绍了浅谈python 调用open()打开文件时路径出错的原因,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • Python中的imread()函数用法说明

    Python中的imread()函数用法说明

    这篇文章主要介绍了Python中的imread()函数用法说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • pytorch实现下载加载mnist数据集

    pytorch实现下载加载mnist数据集

    这篇文章主要介绍了pytorch实现下载加载mnist数据集方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-06-06

最新评论