Python 余弦相似度与皮尔逊相关系数 计算实例

 更新时间:2019年12月23日 17:01:31   作者:gmHappy  
今天小编就为大家分享一篇Python 余弦相似度与皮尔逊相关系数 计算实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

夹角余弦(Cosine)

也可以叫余弦相似度。 几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。

(1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式:

(2) 两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦

类似的,对于两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度。

即:

余弦取值范围为[-1,1]。求得两个向量的夹角,并得出夹角对应的余弦值,此余弦值就可以用来表征这两个向量的相似性。夹角越小,趋近于0度,余弦值越接近于1,它们的方向更加吻合,则越相似。当两个向量的方向完全相反夹角余弦取最小值-1。当余弦值为0时,两向量正交,夹角为90度。因此可以看出,余弦相似度与向量的幅值无关,只与向量的方向相关。

import numpy as np
x=np.random.random(10)
y=np.random.random(10)
 
#方法一:根据公式求解
d1=np.dot(x,y)/(np.linalg.norm(x)*np.linalg.norm(y))
 
#方法二:根据scipy库求解
from scipy.spatial.distance import pdist
X=np.vstack([x,y])
d2=1-pdist(X,'cosine')

两个向量完全相等时,余弦值为1,如下的代码计算出来的d=1。

d=1-pdist([x,x],'cosine')

皮尔逊相关系数(Pearson correlation)

(1) 皮尔逊相关系数的定义

前面提到的余弦相似度只与向量方向有关,但它会受到向量的平移影响,在夹角余弦公式中如果将 x 平移到 x+1, 余弦值就会改变。怎样才能实现平移不变性?这就要用到皮尔逊相关系数(Pearson correlation),有时候也直接叫相关系数。

如果将夹角余弦公式写成:

皮尔逊相关系数具有平移不变性和尺度不变性,计算出了两个向量(维度)的相关性。

在python中的实现:'

import numpy as np
x=np.random.random(10)
y=np.random.random(10)
 
#方法一:根据公式求解
x_=x-np.mean(x)
y_=y-np.mean(y)
d1=np.dot(x_,y_)/(np.linalg.norm(x_)*np.linalg.norm(y_))
 
#方法二:根据numpy库求解
X=np.vstack([x,y])
d2=np.corrcoef(X)[0][1]

相关系数是衡量随机变量X与Y相关程度的一种方法,相关系数的取值范围是[-1,1]。相关系数的绝对值越大,则表明X与Y相关度越高。当X与Y线性相关时,相关系数取值为1(正线性相关)或-1(负线性相关)。

相关文章

  • Django+Celery实现动态配置定时任务的方法示例

    Django+Celery实现动态配置定时任务的方法示例

    这篇文章主要介绍了Django + Celery 实现动态配置定时任务的方法示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-05-05
  • R语言绘制条形图及分布密度图代码总结

    R语言绘制条形图及分布密度图代码总结

    这篇文章主要为大家介绍了R语言条形图及分布密度图代码总结,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-05-05
  • 关于Python中的元组介绍

    关于Python中的元组介绍

    大家好,本篇文章主要讲的是关于Python中的元组介绍,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下,方便下次浏览
    2021-12-12
  • Python创建普通菜单示例【基于win32ui模块】

    Python创建普通菜单示例【基于win32ui模块】

    这篇文章主要介绍了Python创建普通菜单,结合实例形式分析了Python基于win32ui模块创建普通菜单及添加菜单项的相关操作技巧,并附带说明了win32ui模块的安装命令,需要的朋友可以参考下
    2018-05-05
  • np.where()[0] 和 np.where()[1]的具体使用

    np.where()[0] 和 np.where()[1]的具体使用

    这篇文章主要介绍了np.where()[0] 和 np.where()[1]的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-03-03
  • PyQt 5 设置Logo图标和Title标题的操作

    PyQt 5 设置Logo图标和Title标题的操作

    这篇文章主要介绍了PyQt 5 设置Logo图标和Title标题的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • 探究Python中isalnum()方法的使用

    探究Python中isalnum()方法的使用

    这篇文章主要介绍了探究Python中isalnum()方法的使用,是Python入门学习中的基础知识,需要的朋友可以参考下
    2015-05-05
  • 命令行运行Python脚本时传入参数的三种方式详解

    命令行运行Python脚本时传入参数的三种方式详解

    这篇文章主要介绍了命令行运行Python脚本时传入参数的三种方式详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-10-10
  • 用vscode开发python的步骤详解

    用vscode开发python的步骤详解

    这篇文章主要介绍了用vscode开发python的步骤详解,本文分步骤给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-08-08
  • python sklearn 画出决策树并保存为PDF的实现过程

    python sklearn 画出决策树并保存为PDF的实现过程

    这篇文章主要介绍了python sklearn 画出决策树并保存为PDF的实现过程,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-07-07

最新评论