python dataframe NaN处理方式
更新时间:2019年12月26日 16:17:26 作者:伴生伴熟
今天小编就为大家分享一篇python dataframe NaN处理方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
将dataframe中的NaN替换成希望的值
import pandas as pd df1 = pd.DataFrame([{'col1':'a', 'col2':1}, {'col1':'b', 'col2':2}]) df2 = pd.DataFrame([{'col1':'a', 'col3':11}, {'col1':'c', 'col3':33}]) data = pd.merge(left=df1, right=df2, how='left', left_on='col1', right_on='col1') print data # 将NaN替换为None print data.where(data.notnull(), None)
输出结果:
col1 col2 col3 0 a 1 11 1 b 2 NaN col1 col2 col3 0 a 1 11 1 b 2 None
以上这篇python dataframe NaN处理方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
解决Matplotlib图表不能在Pycharm中显示的问题
今天小编就为大家分享一篇解决Matplotlib图表不能在Pycharm中显示的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2018-05-05python中的 sorted()函数和sort()方法区别
这篇文章主要介绍了python中的 sorted()函数和sort()方法,首先看sort()方法,sort方法只能对列表进行操作,而sorted可用于所有的可迭代对象。具体内容需要的小伙伴可以参考下面章节2022-02-02
最新评论