浅谈对pytroch中torch.autograd.backward的思考

 更新时间:2019年12月27日 08:26:39   作者:https://oldpan.me/archives/pytroch-torch-autograd-backward  
这篇文章主要介绍了对pytroch中torch.autograd.backward的思考,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

反向传递法则是深度学习中最为重要的一部分,torch中的backward可以对计算图中的梯度进行计算和累积

这里通过一段程序来演示基本的backward操作以及需要注意的地方

>>> import torch
>>> from torch.autograd import Variable

>>> x = Variable(torch.ones(2,2), requires_grad=True)
>>> y = x + 2
>>> y.grad_fn
Out[6]: <torch.autograd.function.AddConstantBackward at 0x229e7068138>
>>> y.grad

>>> z = y*y*3
>>> z.grad_fn
Out[9]: <torch.autograd.function.MulConstantBackward at 0x229e86cc5e8>
>>> z
Out[10]: 
Variable containing:
 27 27
 27 27
[torch.FloatTensor of size 2x2]
>>> out = z.mean()
>>> out.grad_fn
Out[12]: <torch.autograd.function.MeanBackward at 0x229e86cc408>
>>> out.backward()   # 这里因为out为scalar标量,所以参数不需要填写
>>> x.grad
Out[19]: 
Variable containing:
 4.5000 4.5000
 4.5000 4.5000
[torch.FloatTensor of size 2x2]
>>> out  # out为标量
Out[20]: 
Variable containing:
 27
[torch.FloatTensor of size 1]

>>> x = Variable(torch.Tensor([2,2,2]), requires_grad=True)
>>> y = x*2
>>> y
Out[52]: 
Variable containing:
 4
 4
 4
[torch.FloatTensor of size 3]
>>> y.backward() # 因为y输出为非标量,求向量间元素的梯度需要对所求的元素进行标注,用相同长度的序列进行标注
Traceback (most recent call last):
 File "C:\Users\dell\Anaconda3\envs\my-pytorch\lib\site-packages\IPython\core\interactiveshell.py", line 2862, in run_code
  exec(code_obj, self.user_global_ns, self.user_ns)
 File "<ipython-input-53-95acac9c3254>", line 1, in <module>
  y.backward()
 File "C:\Users\dell\Anaconda3\envs\my-pytorch\lib\site-packages\torch\autograd\variable.py", line 156, in backward
  torch.autograd.backward(self, gradient, retain_graph, create_graph, retain_variables)
 File "C:\Users\dell\Anaconda3\envs\my-pytorch\lib\site-packages\torch\autograd\__init__.py", line 86, in backward
  grad_variables, create_graph = _make_grads(variables, grad_variables, create_graph)
 File "C:\Users\dell\Anaconda3\envs\my-pytorch\lib\site-packages\torch\autograd\__init__.py", line 34, in _make_grads
  raise RuntimeError("grad can be implicitly created only for scalar outputs")
RuntimeError: grad can be implicitly created only for scalar outputs

>>> y.backward(torch.FloatTensor([0.1, 1, 10]))
>>> x.grad        #注意这里的0.1,1.10为梯度求值比例
Out[55]: 
Variable containing:
 0.2000
 2.0000
 20.0000
[torch.FloatTensor of size 3]

>>> y.backward(torch.FloatTensor([0.1, 1, 10]))
>>> x.grad        # 梯度累积
Out[57]: 
Variable containing:
 0.4000
 4.0000
 40.0000
[torch.FloatTensor of size 3]

>>> x.grad.data.zero_() # 梯度累积进行清零
Out[60]: 
 0
 0
 0
[torch.FloatTensor of size 3]
>>> x.grad       # 累积为空
Out[61]: 
Variable containing:
 0
 0
 0
[torch.FloatTensor of size 3]
>>> y.backward(torch.FloatTensor([0.1, 1, 10]))
>>> x.grad
Out[63]: 
Variable containing:
 0.2000
 2.0000
 20.0000
[torch.FloatTensor of size 3]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python可视化分析的实现(matplotlib、seaborn、ggplot2)

    python可视化分析的实现(matplotlib、seaborn、ggplot2)

    这篇文章主要介绍了python可视化分析的实现(matplotlib、seaborn、ggplot2),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-02-02
  • python将写好的程序打包成exe可执行文件

    python将写好的程序打包成exe可执行文件

    这篇文章主要介绍了python写好的程序打包成exe可执行文件,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-08-08
  • python包装和授权学习教程

    python包装和授权学习教程

    包装是指对一个已经存在的对象进行系定义加工,实现授权是包装的一个特性,下面这篇文章主要给大家介绍了关于python包装和授权的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2023-06-06
  • Python中利用Scipy包的SIFT方法进行图片识别的实例教程

    Python中利用Scipy包的SIFT方法进行图片识别的实例教程

    SIFT算法可以检测图片中的局部特征,算法原理相当复杂...但是!Python强大的第三方包Scipy中带有实现SIFT算法的SIFT方法,我们只要拿来用就可以了,下面就为大家带来Python中利用Scipy包的SIFT方法进行图片识别的实例教程.
    2016-06-06
  • Python中__repr__和__str__区别详解

    Python中__repr__和__str__区别详解

    这篇文章主要介绍了Python中__repr__和__str__区别详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-11-11
  • 使用python批量转换文件编码为UTF-8的实现

    使用python批量转换文件编码为UTF-8的实现

    这篇文章主要介绍了使用python批量转换文件编码为UTF-8的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-04-04
  • Python自然语言处理之词干,词形与最大匹配算法代码详解

    Python自然语言处理之词干,词形与最大匹配算法代码详解

    这篇文章主要介绍了Python自然语言处理之词干,词形与MaxMatch算法代码详解,涉及词干提取,词形还原,简单总结了二者的区别和联系,最后还分享了最大匹配算法的相关示例,具有一定参考价值,需要的朋友可以了解下。
    2017-11-11
  • 浅谈Python中的继承

    浅谈Python中的继承

    这篇文章主要介绍了Python中继承的的相关资料,文中讲解非常细致,代码帮助大家更好的理解和学习,感兴趣的朋友可以了解下
    2020-06-06
  • Python if语句知识点用法总结

    Python if语句知识点用法总结

    本篇文章给python初学者总结了关于Python之if语句的相关用法以及知识点总结,跟着学习下吧。
    2018-06-06
  • Python Json模块中dumps、loads、dump、load函数介绍

    Python Json模块中dumps、loads、dump、load函数介绍

    本篇文章主要介绍了Python Json模块中dumps、loads、dump、load函数介绍,详细的介绍了这几种函数的用法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-05-05

最新评论