pytorch .detach() .detach_() 和 .data用于切断反向传播的实现

 更新时间:2019年12月27日 14:36:44   作者:慢行厚积  
这篇文章主要介绍了pytorch .detach() .detach_() 和 .data用于切断反向传播的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

当我们再训练网络的时候可能希望保持一部分的网络参数不变,只对其中一部分的参数进行调整;或者值训练部分分支网络,并不让其梯度对主网络的梯度造成影响,这时候我们就需要使用detach()函数来切断一些分支的反向传播

1   detach()[source]

返回一个新的Variable,从当前计算图中分离下来的,但是仍指向原变量的存放位置,不同之处只是requires_grad为false,得到的这个Variable永远不需要计算其梯度,不具有grad。

即使之后重新将它的requires_grad置为true,它也不会具有梯度grad

这样我们就会继续使用这个新的Variable进行计算,后面当我们进行反向传播时,到该调用detach()的Variable就会停止,不能再继续向前进行传播

源码为:

def detach(self):
    """Returns a new Variable, detached from the current graph.
    Result will never require gradient. If the input is volatile, the output
    will be volatile too.
    .. note::
     Returned Variable uses the same data tensor, as the original one, and
     in-place modifications on either of them will be seen, and may trigger
     errors in correctness checks.
    """
    result = NoGrad()(self) # this is needed, because it merges version counters
    result._grad_fn = None
     return result

可见函数进行的操作有:

  • 将grad_fn设置为None
  • 将Variable的requires_grad设置为False

如果输入 volatile=True(即不需要保存记录,当只需要结果而不需要更新参数时这么设置来加快运算速度),那么返回的Variable volatile=True。(volatile已经弃用)

注意:

返回的Variable和原始的Variable公用同一个data tensor。in-place函数修改会在两个Variable上同时体现(因为它们共享data tensor),当要对其调用backward()时可能会导致错误。

举例:

比如正常的例子是:

import torch

a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a.grad)
out = a.sigmoid()

out.sum().backward()
print(a.grad)

返回:

(deeplearning) userdeMBP:pytorch user$ python test.py
None
tensor([0.1966, 0.1050, 0.0452])

当使用detach()但是没有进行更改时,并不会影响backward():

import torch

a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a.grad)
out = a.sigmoid()
print(out)

#添加detach(),c的requires_grad为False
c = out.detach()
print(c)

#这时候没有对c进行更改,所以并不会影响backward()
out.sum().backward()
print(a.grad)

返回:

(deeplearning) userdeMBP:pytorch user$ python test.py
None
tensor([0.7311, 0.8808, 0.9526], grad_fn=<SigmoidBackward>)
tensor([0.7311, 0.8808, 0.9526])
tensor([0.1966, 0.1050, 0.0452])

可见c,out之间的区别是c是没有梯度的,out是有梯度的

如果这里使用的是c进行sum()操作并进行backward(),则会报错:

import torch

a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a.grad)
out = a.sigmoid()
print(out)

#添加detach(),c的requires_grad为False
c = out.detach()
print(c)

#使用新生成的Variable进行反向传播
c.sum().backward()
print(a.grad)

返回:

(deeplearning) userdeMBP:pytorch user$ python test.py
None
tensor([0.7311, 0.8808, 0.9526], grad_fn=<SigmoidBackward>)
tensor([0.7311, 0.8808, 0.9526])
Traceback (most recent call last):
  File "test.py", line 13, in <module>
    c.sum().backward()
  File "/anaconda3/envs/deeplearning/lib/python3.6/site-packages/torch/tensor.py", line 102, in backward
    torch.autograd.backward(self, gradient, retain_graph, create_graph)
  File "/anaconda3/envs/deeplearning/lib/python3.6/site-packages/torch/autograd/__init__.py", line 90, in backward
    allow_unreachable=True)  # allow_unreachable flag
RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn

如果此时对c进行了更改,这个更改会被autograd追踪,在对out.sum()进行backward()时也会报错,因为此时的值进行backward()得到的梯度是错误的:

import torch

a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a.grad)
out = a.sigmoid()
print(out)

#添加detach(),c的requires_grad为False
c = out.detach()
print(c)
c.zero_() #使用in place函数对其进行修改

#会发现c的修改同时会影响out的值
print(c)
print(out)

#这时候对c进行更改,所以会影响backward(),这时候就不能进行backward(),会报错
out.sum().backward()
print(a.grad)

返回:

(deeplearning) userdeMBP:pytorch user$ python test.py
None
tensor([0.7311, 0.8808, 0.9526], grad_fn=<SigmoidBackward>)
tensor([0.7311, 0.8808, 0.9526])
tensor([0., 0., 0.])
tensor([0., 0., 0.], grad_fn=<SigmoidBackward>)
Traceback (most recent call last):
  File "test.py", line 16, in <module>
    out.sum().backward()
  File "/anaconda3/envs/deeplearning/lib/python3.6/site-packages/torch/tensor.py", line 102, in backward
    torch.autograd.backward(self, gradient, retain_graph, create_graph)
  File "/anaconda3/envs/deeplearning/lib/python3.6/site-packages/torch/autograd/__init__.py", line 90, in backward
    allow_unreachable=True)  # allow_unreachable flag
RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation

2   .data

如果上面的操作使用的是.data,效果会不同:

这里的不同在于.data的修改不会被autograd追踪,这样当进行backward()时它不会报错,回得到一个错误的backward值

import torch

a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a.grad)
out = a.sigmoid()
print(out)


c = out.data
print(c)
c.zero_() #使用in place函数对其进行修改

#会发现c的修改同时也会影响out的值
print(c)
print(out)

#这里的不同在于.data的修改不会被autograd追踪,这样当进行backward()时它不会报错,回得到一个错误的backward值
out.sum().backward()
print(a.grad)

返回:

(deeplearning) userdeMBP:pytorch user$ python test.py
None
tensor([0.7311, 0.8808, 0.9526], grad_fn=<SigmoidBackward>)
tensor([0.7311, 0.8808, 0.9526])
tensor([0., 0., 0.])
tensor([0., 0., 0.], grad_fn=<SigmoidBackward>)
tensor([0., 0., 0.])

上面的内容实现的原理是:

In-place 正确性检查

所有的Variable都会记录用在他们身上的 in-place operations。如果pytorch检测到variable在一个Function中已经被保存用来backward,但是之后它又被in-place operations修改。当这种情况发生时,在backward的时候,pytorch就会报错。这种机制保证了,如果你用了in-place operations,但是在backward过程中没有报错,那么梯度的计算就是正确的。

⚠️下面结果正确是因为改变的是sum()的结果,中间值a.sigmoid()并没有被影响,所以其对求梯度并没有影响:

import torch

a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a.grad)
out = a.sigmoid().sum() #但是如果sum写在这里,而不是写在backward()前,得到的结果是正确的
print(out)


c = out.data
print(c)
c.zero_() #使用in place函数对其进行修改

#会发现c的修改同时也会影响out的值
print(c)
print(out)

#没有写在这里
out.backward()
print(a.grad)

返回:

(deeplearning) userdeMBP:pytorch user$ python test.py
None
tensor(2.5644, grad_fn=<SumBackward0>)
tensor(2.5644)
tensor(0.)
tensor(0., grad_fn=<SumBackward0>)
tensor([0.1966, 0.1050, 0.0452])

3   detach_()[source]

将一个Variable从创建它的图中分离,并把它设置成叶子variable

其实就相当于变量之间的关系本来是x -> m -> y,这里的叶子variable是x,但是这个时候对m进行了.detach_()操作,其实就是进行了两个操作:

  • 将m的grad_fn的值设置为None,这样m就不会再与前一个节点x关联,这里的关系就会变成x, m -> y,此时的m就变成了叶子结点
  • 然后会将m的requires_grad设置为False,这样对y进行backward()时就不会求m的梯度

这么一看其实detach()和detach_()很像,两个的区别就是detach_()是对本身的更改,detach()则是生成了一个新的variable

比如x -> m -> y中如果对m进行detach(),后面如果反悔想还是对原来的计算图进行操作还是可以的

但是如果是进行了detach_(),那么原来的计算图也发生了变化,就不能反悔了

参考:https://pytorch-cn.readthedocs.io/zh/latest/package_references/torch-autograd/#detachsource

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • 详解Python中四种关系图数据可视化的效果对比

    详解Python中四种关系图数据可视化的效果对比

    python关系图的可视化主要就是用来分析一堆数据中,每一条数据的节点之间的连接关系从而更好的分析出人物或其他场景中存在的关联关系。本文将制作四个不同的关系图的可视化效果,感兴趣的可以了解一下
    2022-11-11
  • 创建虚拟环境打包py文件的实现步骤

    创建虚拟环境打包py文件的实现步骤

    使用虚拟环境,可以为每个项目创建一个独立的Python环境,每个环境都有自己的库和版本,从而避免了依赖冲突,本文主要介绍了创建虚拟环境打包py文件的实现步骤,感兴趣的可以了解一下
    2024-04-04
  • 基于python二叉树的构造和打印例子

    基于python二叉树的构造和打印例子

    今天小编就为大家分享一篇基于python二叉树的构造和打印例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • Linux系统(CentOS)下python2.7.10安装

    Linux系统(CentOS)下python2.7.10安装

    这篇文章主要为大家详细介绍了Linux系统(CentOS)下python2.7.10安装图文教程,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-09-09
  • python3 中使用urllib问题以及urllib详解

    python3 中使用urllib问题以及urllib详解

    这篇文章主要介绍了python3 中使用urllib问题以及urllib详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-08-08
  • Python matplotlib绘制实时数据动画

    Python matplotlib绘制实时数据动画

    Matplotlib作为Python的2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形。本文将利用Matplotlib库绘制实时数据动画,感兴趣的可以了解一下
    2022-03-03
  • python安装cx_Oracle和wxPython的方法

    python安装cx_Oracle和wxPython的方法

    这篇文章主要介绍了python安装cx_Oracle和wxPython的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-09-09
  • python网络爬虫 CrawlSpider使用详解

    python网络爬虫 CrawlSpider使用详解

    这篇文章主要介绍了python网络爬虫 CrawlSpider使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-09-09
  • Tensorflow 实现将图像与标签数据转化为tfRecord文件

    Tensorflow 实现将图像与标签数据转化为tfRecord文件

    今天小编就为大家分享一篇Tensorflow 实现将图像与标签数据转化为tfRecord文件,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • Python将文本去空格并保存到txt文件中的实例

    Python将文本去空格并保存到txt文件中的实例

    今天小编就为大家分享一篇Python将文本去空格并保存到txt文件中的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07

最新评论