基于python及pytorch中乘法的使用详解
更新时间:2019年12月27日 15:26:57 作者:_ReLU_
今天小编就为大家分享一篇基于python及pytorch中乘法的使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
numpy中的乘法
A = np.array([[1, 2, 3], [2, 3, 4]]) B = np.array([[1, 0, 1], [2, 1, -1]]) C = np.array([[1, 0], [0, 1], [-1, 0]]) A * B : # 对应位置相乘 np.array([[ 1, 0, 3], [ 4, 3, -4]]) A.dot(B) : # 矩阵乘法 ValueError: shapes (2,3) and (2,3) not aligned: 3 (dim 1) != 2 (dim 0) A.dot(C) : # 矩阵乘法 | < -- > np.dot(A, C) np.array([[-2, 2],[-2, 3]])
总结 : 在numpy中,*表示为两个数组对应位置相乘; dot表示两个数组进行矩阵乘法
pytorch中的乘法
A = torch.tensor([[1, 2, 3], [2, 3, 4]]) B = torch.tensor([[1, 0, 1], [2, 1, -1]]) C = torch.tensor([[1, 0], [0, 1], [-1, 0]]) # 矩阵乘法 torch.mm(mat1, mat2, out=None) <--> torch.matmul(mat1, mat2, out=None) eg : torch.mm(A, B) : RuntimeError: size mismatch, m1: [2 x 3], m2: [2 x 3] torch.mm(A, C) : tensor([[-2, 2], [-2, 3]]) torch.matmul(A, C) : tensor([[-2, 2], [-2, 3]]) # 点乘 torch.mul(mat1, mat2, out=None) eg : torch.mul(A, B) : tensor([[ 1, 0, 3], [ 4, 3, -4]]) torch.mul(A, C) : RuntimeError: The size of tensor a (3) must match the size of tensor b (2) at non-singleton dimension 1
总结 : 在pytorch中,mul表示为两个数组对应位置相乘; mm和matmul表示两个数组进行矩阵乘法
以上这篇基于python及pytorch中乘法的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
您可能感兴趣的文章:
相关文章
解决Python 爬虫URL中存在中文或特殊符号无法请求的问题
今天小编就为大家分享一篇解决Python 爬虫URL中存在中文或特殊符号无法请求的问题。这种问题,初学者应该都会遇到,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2018-05-05python中使用paramiko模块并实现远程连接服务器执行上传下载功能
paramiko是用python语言写的一个模块,遵循SSH2协议,支持以加密和认证的方式,进行远程服务器的连接。这篇文章主要介绍了python中使用paramiko模块并实现远程连接服务器执行上传下载功能,需要的朋友可以参考下2020-02-02python将Dataframe格式的数据写入opengauss数据库并查询
这篇文章主要介绍了python将Dataframe格式的数据写入opengauss数据库并查询,文章介绍详细具有一定的参考价值,希望对你的学习有所帮助2022-04-04
最新评论