pytorch 自定义卷积核进行卷积操作方式

 更新时间:2019年12月30日 15:23:30   作者:月亮是蓝色  
今天小编就为大家分享一篇pytorch 自定义卷积核进行卷积操作方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

一 卷积操作:在pytorch搭建起网络时,大家通常都使用已有的框架进行训练,在网络中使用最多就是卷积操作,最熟悉不过的就是

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)

通过上面的输入发现想自定义自己的卷积核,比如高斯核,发现是行不通的,因为上面的参数里面只有卷积核尺寸,而权值weight是通过梯度一直更新的,是不确定的。

二 需要自己定义卷积核的目的:目前是需要通过一个VGG网络提取特征特后需要对其进行高斯卷积,卷积后再继续输入到网络中训练。

三 解决方案。使用

torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

这里注意下weight的参数。与nn.Conv2d的参数不一样

可以发现F.conv2d可以直接输入卷积的权值weight,也就是卷积核。那么接下来就要首先生成一个高斯权重了。这里不直接一步步写了,直接输入就行。

kernel = [[0.03797616, 0.044863533, 0.03797616],
     [0.044863533, 0.053, 0.044863533],
     [0.03797616, 0.044863533, 0.03797616]]

四 完整代码

class GaussianBlur(nn.Module):
  def __init__(self):
    super(GaussianBlur, self).__init__()
    kernel = [[0.03797616, 0.044863533, 0.03797616],
         [0.044863533, 0.053, 0.044863533],
         [0.03797616, 0.044863533, 0.03797616]]
    kernel = torch.FloatTensor(kernel).unsqueeze(0).unsqueeze(0)
    self.weight = nn.Parameter(data=kernel, requires_grad=False)
 
  def forward(self, x):
    x1 = x[:, 0]
    x2 = x[:, 1]
    x3 = x[:, 2]
    x1 = F.conv2d(x1.unsqueeze(1), self.weight, padding=2)
    x2 = F.conv2d(x2.unsqueeze(1), self.weight, padding=2)
    x3 = F.conv2d(x3.unsqueeze(1), self.weight, padding=2)
    x = torch.cat([x1, x2, x3], dim=1)
    return x

这里为了网络模型需要写成了一个类,这里假设输入的x也就是经过网络提取后的三通道特征图(当然不一定是三通道可以是任意通道)

如果是任意通道的话,使用torch.expand()向输入的维度前面进行扩充。如下:

  def blur(self, tensor_image):
    kernel = [[0.03797616, 0.044863533, 0.03797616],
        [0.044863533, 0.053, 0.044863533],
        [0.03797616, 0.044863533, 0.03797616]]
    
    min_batch=tensor_image.size()[0]
    channels=tensor_image.size()[1]
    out_channel=channels
    kernel = torch.FloatTensor(kernel).expand(out_channel,channels,3,3)
    self.weight = nn.Parameter(data=kernel, requires_grad=False)
 
    return F.conv2d(tensor_image,self.weight,1,1)

以上这篇pytorch 自定义卷积核进行卷积操作方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • pytorch查看通道数 维数 尺寸大小方式

    pytorch查看通道数 维数 尺寸大小方式

    这篇文章主要介绍了pytorch查看通道数 维数 尺寸大小方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • python 类对象和实例对象动态添加方法(分享)

    python 类对象和实例对象动态添加方法(分享)

    下面小编就为大家分享一篇python 类对象和实例对象动态添加方法。具有很的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2017-12-12
  • python函数的两种嵌套方法使用

    python函数的两种嵌套方法使用

    本文主要介绍了python函数的两种嵌套方法使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-04-04
  • 基于Python实现骰子小游戏

    基于Python实现骰子小游戏

    骰子,是现在娱乐场所最常见的一种玩乐项目。一般骰子分两人和两人以上玩,而玩法有很多。本文就来用Python实现个骰子小游戏,感兴趣的可以了解一下
    2023-02-02
  • 详解python进行mp3格式判断

    详解python进行mp3格式判断

    这篇文章主要介绍了详解python进行mp3格式判断,具有一定的参考价值,有兴趣的可以了解一下。
    2016-12-12
  • Python3使用腾讯云文字识别(腾讯OCR)提取图片中的文字内容实例详解

    Python3使用腾讯云文字识别(腾讯OCR)提取图片中的文字内容实例详解

    这篇文章主要介绍了Python3使用腾讯云文字识别(腾讯OCR)提取图片中的文字内容方法详解,需要的朋友可以参考下
    2020-02-02
  • Python、 Pycharm、Django安装详细教程(图文)

    Python、 Pycharm、Django安装详细教程(图文)

    这篇文章主要介绍了Python、 Pycharm、Django安装详细教程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-04-04
  • python数据清洗中的时间格式化实现

    python数据清洗中的时间格式化实现

    本文主要介绍了python数据清洗中的时间格式化实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-05-05
  • Python调用百度AI实现人像分割详解

    Python调用百度AI实现人像分割详解

    本文主要介绍了如何通过Python调用百度AI从而实现人像的分割与合成,文中的示例代码对我们的工作或学习有一定的帮助,需要的朋友可以参考一下
    2021-12-12
  • Python操作Oracle数据库的简单方法和封装类实例

    Python操作Oracle数据库的简单方法和封装类实例

    这篇文章主要介绍了Python操作Oracle数据库的简单方法和封装类,结合实例形式分析了Python简单连接、查询、关闭Oracle数据库基本操作,并给出了一个Python针对Oracle各种操作的封装类,需要的朋友可以参考下
    2018-05-05

最新评论