Tensorflow的常用矩阵生成方式
更新时间:2020年01月04日 14:27:21 作者:windows2
今天小编就为大家分享一篇Tensorflow的常用矩阵生成方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
我就废话不多说了,直接上代码吧!
#全0和全1矩阵 v1 = tf.Variable(tf.zeros([3,3,3]), name="v1") v2 = tf.Variable(tf.ones([10,5]), name="v2") #填充单值矩阵 v3 = tf.Variable(tf.fill([2,3], 9)) #常量矩阵 v4_1 = tf.constant([1, 2, 3, 4, 5, 6, 7]) v4_2 = tf.constant(-1.0, shape=[2, 3]) # 和v4_1形状一样的全1或全0矩阵 v5_1=tf.ones_like(v4_1) v5_2=tf.zeros_like(v4_1) #生成等差数列 v6_1 = tf.linspace(10.0, 12.0, 30, name="linspace")#float32 or float64 v7_1 = tf.range(10, 20, 3)#just int32 #生成各种随机数据矩阵 #平均分布 v8_1 = tf.Variable(tf.random_uniform([2,4], minval=0.0, maxval=2.0, dtype=tf.float32, seed=1234, name="v8_1")) #正态分布 v8_2 = tf.Variable(tf.random_normal([2,3], mean=0.0, stddev=1.0, dtype=tf.float32, seed=1234, name="v8_2")) #正态分布,但是去掉2sigma外的数字 v8_3 = tf.Variable(tf.truncated_normal([2,3], mean=0.0, stddev=1.0, dtype=tf.float32, seed=1234, name="v8_3")) #把这3个行重排列 v8_5 = tf.random_shuffle([[1,2,3],[4,5,6],[6,6,6]], seed=134, name="v8_5")
以上都是计算图中的变量,需要sess.run()以后才能成为真正的数据
存取方式是:
np.save("v1.npy",sess.run(v1))#numpy save v1 as file test_a = np.load("v1.npy") print test_a[1,2]
这篇Tensorflow的常用矩阵生成方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
django+xadmin+djcelery实现后台管理定时任务
这篇文章主要介绍了django+xadmin+djcelery实现后台管理定时任务,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧2018-08-08对Python生成汉字字库文字,以及转换为文字图片的实例详解
今天小编就为大家分享一篇对Python生成汉字字库文字,以及转换为文字图片的实例详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2019-01-01使用memory_profiler监测python代码运行时内存消耗方法
今天小编就为大家分享一篇使用memory_profiler监测python代码运行时内存消耗方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2018-12-12详解如何从TensorFlow的mnist数据集导出手写体数字图片
这篇文章主要介绍了详解如何从TensorFlow的mnist数据集导出手写体数字图片,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧2019-08-08
最新评论