Pytorch 神经网络—自定义数据集上实现教程

 更新时间:2020年01月07日 14:09:58   作者:LZDCQU  
今天小编就为大家分享一篇Pytorch 神经网络—自定义数据集上实现教程,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

第一步、导入需要的包

import os
import scipy.io as sio
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
from torch.autograd import Variable
batchSize = 128 # batchsize的大小
niter = 10   # epoch的最大值 

第二步、构建神经网络

设神经网络为如上图所示,输入层4个神经元,两层隐含层各4个神经元,输出层一个神经。每一层网络所做的都是线性变换,即y=W×X+b;代码实现如下:

class Neuralnetwork(nn.Module):
  def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
    super(Neuralnetwork, self).__init__()
    self.layer1 = nn.Linear(in_dim, n_hidden_1)
    self.layer2 = nn.Linear(n_hidden_1, n_hidden_2)
    self.layer3 = nn.Linear(n_hidden_2, out_dim)
 
  def forward(self, x):
    x = x.view(x.size(0), -1)
    x = self.layer1(x)
    x = self.layer2(x)
    x = self.layer3(x)
    return x
 
model = Neuralnetwork(1*3, 4, 4, 1)
 
print(model) # net architecture
Neuralnetwork(
 (layer1): Linear(in_features=3, out_features=4, bias=True)
 (layer2): Linear(in_features=4, out_features=4, bias=True)
 (layer3): Linear(in_features=4, out_features=1, bias=True)
)

​​ 第三步、读取数据

自定义的数据为demo_SBPFea.mat,是MATLAB保存的数据格式,其存储的内容如下:包括fea(1000*3)和sbp(1000*1)两个数组;fea为特征向量,行为样本数,列为特征宽度;sbp为标签

class SBPEstimateDataset(Dataset):
 
  def __init__(self, ext='demo'):
  
    data = sio.loadmat(ext+'_SBPFea.mat')
    self.fea = data['fea']
    self.sbp = data['sbp']
    
  def __len__(self):
    
    return len(self.sbp)
 
  def __getitem__(self, idx):
 
    fea = self.fea[idx]
    sbp = self.sbp[idx]
    """Convert ndarrays to Tensors."""
    return {'fea': torch.from_numpy(fea).float(),
        'sbp': torch.from_numpy(sbp).float()
        }
    
train_dataset = SBPEstimateDataset(ext='demo')
train_loader = DataLoader(train_dataset, batch_size=batchSize, # 分批次训练
             shuffle=True, num_workers=int(8))

整个数据样本为1000,以batchSize = 128划分,分为8份,前7份为104个样本,第8份则为104个样本。在网络训练过程中,是一份数据一份数据进行训练的

第四步、模型训练

# 优化器,Adam 
optimizer = optim.Adam(list(model.parameters()), lr=0.0001, betas=(0.9, 0.999),weight_decay=0.004) 
scheduler = optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.997) 
criterion = nn.MSELoss() # loss function 
 
if torch.cuda.is_available(): # 有GPU,则用GPU计算
   model.cuda() 
   criterion.cuda() 
 
for epoch in range(niter): 
   losses = [] 
   ERROR_Train = [] 
   model.train() 
   for i, data in enumerate(train_loader, 0): 
     model.zero_grad()# 首先提取清零 
     real_cpu, label_cpu = data['fea'], data['sbp'] 
 
     if torch.cuda.is_available():# CUDA可用情况下,将Tensor 在GPU上运行 
       real_cpu = real_cpu.cuda() 
       label_cpu = label_cpu.cuda() 
 
 
       input=real_cpu 
       label=label_cpu 
 
       inputv = Variable(input) 
       labelv = Variable(label) 
 
       output = model(inputv) 
       err = criterion(output, labelv) 
       err.backward() 
       optimizer.step() 
 
       losses.append(err.data[0]) 
 
       error = output.data-label+ 1e-12 
       ERROR_Train.extend(error) 
 
   MAE = np.average(np.abs(np.array(ERROR_Train))) 
   ME = np.average(np.array(ERROR_Train)) 
   STD = np.std(np.array(ERROR_Train)) 
 
   print('[%d/%d] Loss: %.4f MAE: %.4f Mean Error: %.4f STD: %.4f' % ( 
   epoch, niter, np.average(losses), MAE, ME, STD))
   
   ​​
[0/10] Loss: 18384.6699 MAE: 135.3871 Mean Error: -135.3871 STD: 7.5580
[1/10] Loss: 17063.0215 MAE: 130.4145 Mean Error: -130.4145 STD: 7.8918
[2/10] Loss: 13689.1934 MAE: 116.6625 Mean Error: -116.6625 STD: 9.7946
[3/10] Loss: 8192.9053 MAE: 89.6611 Mean Error: -89.6611 STD: 12.9911
[4/10] Loss: 2979.1340 MAE: 52.5410 Mean Error: -52.5279 STD: 15.0930
[5/10] Loss: 599.7094 MAE: 22.2735 Mean Error: -19.9979 STD: 14.2069
[6/10] Loss: 207.2831 MAE: 11.2394 Mean Error: -4.8821 STD: 13.5528
[7/10] Loss: 189.8173 MAE: 9.8020 Mean Error: -1.2357 STD: 13.7095
[8/10] Loss: 188.3376 MAE: 9.6512 Mean Error: -0.6498 STD: 13.7075
[9/10] Loss: 186.8393 MAE: 9.6946 Mean Error: -1.0850 STD: 13.6332​
 

以上这篇Pytorch 神经网络—自定义数据集上实现教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Django项目如何配置Memcached和Redis缓存?选择哪个更有优势?

    Django项目如何配置Memcached和Redis缓存?选择哪个更有优势?

    这篇文章主要介绍了Django项目如何配置Memcached和Redis缓存,帮助大家更好的理解和学习使用django框架,感兴趣的朋友可以了解下
    2021-04-04
  • Python利用LyScript插件实现批量打开关闭进程

    Python利用LyScript插件实现批量打开关闭进程

    LyScript是一款x64dbg主动化操控插件,经过Python操控X64dbg,完成了远程动态调试,解决了逆向工作者剖析漏洞,寻觅指令片段,原生脚本不行强壮的问题。本文将利用LyScript插件实现批量打开关闭进程,感兴趣的可以了解一下
    2022-07-07
  • numpy工程实践之np.savetxt()存储数据

    numpy工程实践之np.savetxt()存储数据

    NumPy提供了多种存取数组内容的文件操作函数,保存数组数据的文件可以是二进制格式或者文本格式,下面这篇文章主要给大家介绍了关于numpy工程实践之np.savetxt()存储数据的相关资料,需要的朋友可以参考下
    2023-05-05
  • python利用pymysql和openpyxl实现操作MySQL数据库并插入数据

    python利用pymysql和openpyxl实现操作MySQL数据库并插入数据

    这篇文章主要为大家详细介绍了如何使用Python连接MySQL数据库,并从Excel文件中读取数据,将其插入到MySQL数据库中,有需要的小伙伴可以参考一下
    2023-10-10
  • 使用Python+OpenCV进行卡类型及16位卡号数字的OCR功能

    使用Python+OpenCV进行卡类型及16位卡号数字的OCR功能

    本文将使用Python+OpenCV实现模板匹配算法,以自动识别卡的类型和以及16位卡号数字,通过实例代码给大家介绍的非常详细,需要的朋友参考下吧
    2021-08-08
  • Ubuntu 下 vim 搭建python 环境 配置

    Ubuntu 下 vim 搭建python 环境 配置

    这篇文章主要介绍了Ubuntu 下 vim 搭建python环境配置,需要的朋友可以参考下
    2017-06-06
  • Python 键盘事件详解

    Python 键盘事件详解

    这篇文章主要为大家详细介绍了Python的 键盘事件,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-11-11
  • Python3中最常用的5种线程锁实例总结

    Python3中最常用的5种线程锁实例总结

    python3线程中锁机制还是很重要的知识点,如果大家不清楚锁机制的话,那就一定要好好看下这篇文章,这篇文章主要给大家总结介绍了光宇Python3中最常用的5种线程锁,需要的朋友可以参考下
    2021-07-07
  • Python文件系统模块pathlib库

    Python文件系统模块pathlib库

    这篇文章介绍了Python中的文件系统模块pathlib库,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-05-05
  • python模块详解之pywin32使用文档(python操作windowsAPI)

    python模块详解之pywin32使用文档(python操作windowsAPI)

    pywin32是一个第三方模块库,主要的作用是方便python开发者快速调用windows API的一个模块库,这篇文章主要给大家介绍了关于python模块详解之pywin32使用文档的相关资料,文中将python操作windowsAPI介绍的非常详细,需要的朋友可以参考下
    2024-01-01

最新评论