np.dot()函数的用法详解

 更新时间:2020年01月17日 14:34:18   作者:100yes001  
这篇文章主要介绍了np.dot()函数的用法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

基本简介

dot函数为numpy库下的一个函数,主要用于矩阵的乘法运算,其中包括:向量内积、多维矩阵乘法和矩阵与向量的乘法。

1. 向量内积

向量其实是一维的矩阵,两个向量进行内积运算时,需要保证两个向量包含的元素个数是相同的。

例1:

import numpy as np

x = np.array([1, 2, 3, 4, 5, 6, 7])
y = np.array([2, 3, 4, 5, 6, 7, 8])
result = np.dot(x, y)
print(result)

输出结果:

168

计算过程就是将向量中对应元素相乘,再相加所得。即普通的向量乘法运算。

2. 矩阵乘法运算

两个矩阵(x, y)如果可以进行乘法运算,需要满足以下条件:
x为 m×n 阶矩阵,y为 n×p 阶矩阵,
则相乘的结果 result 为 m×p 阶矩阵。

例2:

import numpy as np

x = np.array([[1, 2, 3],
   [3, 4, 4]])
y = np.array([[0, 1, 1, 1],
   [1, 2, 0, 1],
   [0, 0, 2, 1]])
result = np.dot(x, y)

print(result)
print("x阶数:" + str(x.shape))
print("y阶数:" + str(y.shape))
print("result阶数:" + str(result.shape))

结果为:

[[ 2  5  7  6]
 [ 4 11 11 11]]
x阶数:(2, 3)
y阶数:(3, 4)
result阶数:(2, 4)

dot(x, y)不等于dot(y, x),矩阵乘法不满足交换律

例3:

import numpy as np

x = np.array([[1, 2],
   [3, 4]])
y = np.array([[2, 2],
   [1, 2]])
result1 = np.dot(x, y)
result2 = np.dot(y, x)

print("result1 = " + str(result1))
print("result2 = " + str(result2))

结果为:

result1 = [[ 4  6]
           [10 14]]
result2 = [[ 8 12]
           [ 7 10]]

如果不满足运算前提,都不可以运算。例2的dot(y,x)不满足运算条件,因此运算会报错。

例4:

import numpy as np

x = np.array([[1, 2, 3],
   [3, 4, 4]])
y = np.array([[0, 1, 1, 1],
   [1, 2, 0, 1],
   [0, 0, 2, 1]])
result = np.dot(y, x)

print(result)

结果为:

Traceback (most recent call last):
  File "numpy1.py", line 96, in <module>
    result = np.dot(y,x)
  File "<__array_function__ internals>", line 6, in dot
ValueError: shapes (3,4) and (2,3) not aligned: 4 (dim 1) != 2 (dim 0)

3. 矩阵与向量乘法

矩阵x为m×n阶,向量y为n阶向量,则矩阵x和向量y可以进行乘法运算,结果为m阶向量。进行运算时,会首先将后面一项进行自动转置操作,之后再进行乘法运算。

例5:

import numpy as np

x = np.array([[1, 2, 3],
   [3, 4, 4]])
y = np.array([1, 2, 3])
result = np.dot(x, y)

print(result)
print("x阶数:" + str(x.shape))
print("y阶数:" + str(y.shape))
print("result阶数:" + str(result.shape))

结果为:

[14 23]
x阶数:(2, 3)
y阶数:(3,)
result阶数:(2,)

例6:仍然不满足交换律

import numpy as np

x = np.array([[1, 2, 3],
   [3, 4, 4],
   [0, 1, 1]])
y = np.array([1, 2, 3])
result1 = np.dot(x, y) # 1×1 + 2×2 + 3×3 = 14(result1的第一个元素)
result2 = np.dot(y, x) # 1×1 + 2×3 + 3×0 = 7 (result2的第一个元素)

print("result1 = " + str(result1))
print("result2 = " + str(result2))

结果为:

result1 = [14 23  5]
result2 = [ 7 13 14]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • Python获取某一天是星期几的方法示例

    Python获取某一天是星期几的方法示例

    这篇文章主要介绍了Python获取某一天是星期几的方法,结合完整实例形式分析了Python针对日期与时间的相关计算技巧,需要的朋友可以参考下
    2017-01-01
  • 运动检测ViBe算法python实现代码

    运动检测ViBe算法python实现代码

    这篇文章主要为大家详细介绍了运动检测ViBe算法python实现代码,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-01-01
  • python中class(object)的含义是什么以及用法

    python中class(object)的含义是什么以及用法

    这篇文章主要介绍了python中class(object)的含义是什么以及用法说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-02-02
  • python做图片搜索引擎并保存到本地详情

    python做图片搜索引擎并保存到本地详情

    这篇文章主要介绍了python做图片搜索引擎并保存到本地详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的朋友可以参考一下
    2022-08-08
  • OpenCV实战记录之基于分水岭算法的图像分割

    OpenCV实战记录之基于分水岭算法的图像分割

    在机器视觉中,有时需要对产品进行检测和计数,其难点无非是对于产品的图像分割,这篇文章主要给大家介绍了关于OpenCV实战记录之基于分水岭算法的图像分割的相关资料,需要的朋友可以参考下
    2023-02-02
  • python如何在pygame中设置字体并显示中文详解

    python如何在pygame中设置字体并显示中文详解

    再简单的游戏界面中均涉及文字处理,下面这篇文章主要给大家介绍了关于python如何在pygame中设置字体并显示中文的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下
    2023-01-01
  • python学习print中format的用法示例

    python学习print中format的用法示例

    这篇文章主要为大家介绍了python学习print中format的用法示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-03-03
  • YOLOv5改进系列之增加小目标检测层

    YOLOv5改进系列之增加小目标检测层

    yolov5出来已经很长时间了,所以有关yolov5的一些详细介绍在这里就不一一介绍了,下面这篇文章主要给大家介绍了关于YOLOv5改进系列之增加小目标检测层的相关资料,需要的朋友可以参考下
    2022-09-09
  • Python实现基于KNN算法的笔迹识别功能详解

    Python实现基于KNN算法的笔迹识别功能详解

    这篇文章主要介绍了Python实现基于KNN算法的笔迹识别功能,结合实例形式详细分析了使用KNN算法进行笔迹识别的相关库引入、操作步骤与相关注意事项,需要的朋友可以参考下
    2018-07-07
  • postman模拟访问具有Session的post请求方法

    postman模拟访问具有Session的post请求方法

    今天小编就为大家分享一篇postman模拟访问具有Session的post请求方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07

最新评论