tensorflow使用range_input_producer多线程读取数据实例

 更新时间:2020年01月20日 16:27:58   作者:lyg5623  
今天小编就为大家分享一篇tensorflow使用range_input_producer多线程读取数据实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

先放关键代码:

i = tf.train.range_input_producer(NUM_EXPOCHES, num_epochs=1, shuffle=False).dequeue()
inputs = tf.slice(array, [i * BATCH_SIZE], [BATCH_SIZE])

原理解析:

第一行会产生一个队列,队列包含0到NUM_EXPOCHES-1的元素,如果num_epochs有指定,则每个元素只产生num_epochs次,否则循环产生。shuffle指定是否打乱顺序,这里shuffle=False表示队列的元素是按0到NUM_EXPOCHES-1的顺序存储。在Graph运行的时候,每个线程从队列取出元素,假设值为i,然后按照第二行代码切出array的一小段数据作为一个batch。例如NUM_EXPOCHES=3,如果num_epochs=2,则队列的内容是这样子;

0,1,2,0,1,2

队列只有6个元素,这样在训练的时候只能产生6个batch,迭代6次以后训练就结束。

如果num_epochs不指定,则队列内容是这样子:

0,1,2,0,1,2,0,1,2,0,1,2...

队列可以一直生成元素,训练的时候可以产生无限的batch,需要自己控制什么时候停止训练。

下面是完整的演示代码。

数据文件test.txt内容:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

main.py内容:

import tensorflow as tf
import codecs
 
BATCH_SIZE = 6
NUM_EXPOCHES = 5
 
 
def input_producer():
 array = codecs.open("test.txt").readlines()
	array = map(lambda line: line.strip(), array)
 i = tf.train.range_input_producer(NUM_EXPOCHES, num_epochs=1, shuffle=False).dequeue()
 inputs = tf.slice(array, [i * BATCH_SIZE], [BATCH_SIZE])
 return inputs
 
 
class Inputs(object):
 def __init__(self):
  self.inputs = input_producer()
 
 
def main(*args, **kwargs):
 inputs = Inputs()
 init = tf.group(tf.initialize_all_variables(),
     tf.initialize_local_variables())
 sess = tf.Session()
 coord = tf.train.Coordinator()
 threads = tf.train.start_queue_runners(sess=sess, coord=coord)
 sess.run(init)
 try:
  index = 0
  while not coord.should_stop() and index<10:
   datalines = sess.run(inputs.inputs)
   index += 1
   print("step: %d, batch data: %s" % (index, str(datalines)))
 except tf.errors.OutOfRangeError:
  print("Done traing:-------Epoch limit reached")
 except KeyboardInterrupt:
  print("keyboard interrput detected, stop training")
 finally:
  coord.request_stop()
 coord.join(threads)
 sess.close()
 del sess
	
if __name__ == "__main__":
 main()

输出:

step: 1, batch data: ['1' '2' '3' '4' '5' '6']
step: 2, batch data: ['7' '8' '9' '10' '11' '12']
step: 3, batch data: ['13' '14' '15' '16' '17' '18']
step: 4, batch data: ['19' '20' '21' '22' '23' '24']
step: 5, batch data: ['25' '26' '27' '28' '29' '30']
Done traing:-------Epoch limit reached

如果range_input_producer去掉参数num_epochs=1,则输出:

step: 1, batch data: ['1' '2' '3' '4' '5' '6']
step: 2, batch data: ['7' '8' '9' '10' '11' '12']
step: 3, batch data: ['13' '14' '15' '16' '17' '18']
step: 4, batch data: ['19' '20' '21' '22' '23' '24']
step: 5, batch data: ['25' '26' '27' '28' '29' '30']
step: 6, batch data: ['1' '2' '3' '4' '5' '6']
step: 7, batch data: ['7' '8' '9' '10' '11' '12']
step: 8, batch data: ['13' '14' '15' '16' '17' '18']
step: 9, batch data: ['19' '20' '21' '22' '23' '24']
step: 10, batch data: ['25' '26' '27' '28' '29' '30']

有一点需要注意,文件总共有35条数据,BATCH_SIZE = 6表示每个batch包含6条数据,NUM_EXPOCHES = 5表示产生5个batch,如果NUM_EXPOCHES =6,则总共需要36条数据,就会报如下错误:

InvalidArgumentError (see above for traceback): Expected size[0] in [0, 5], but got 6
 [[Node: Slice = Slice[Index=DT_INT32, T=DT_STRING, _device="/job:localhost/replica:0/task:0/cpu:0"](Slice/input, Slice/begin/_5, Slice/size)]]

错误信息的意思是35/BATCH_SIZE=5,即NUM_EXPOCHES 的取值能只能在0到5之间。

以上这篇tensorflow使用range_input_producer多线程读取数据实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • 基于Tensorflow读取MNIST数据集时网络超时的解决方式

    基于Tensorflow读取MNIST数据集时网络超时的解决方式

    这篇文章主要介绍了基于Tensorflow读取MNIST数据集时网络超时的解决方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • matplotlib之轻松解决中文乱码的问题

    matplotlib之轻松解决中文乱码的问题

    这篇文章主要介绍了matplotlib之轻松解决中文乱码的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-09-09
  • Python抓取框架 Scrapy的架构

    Python抓取框架 Scrapy的架构

    这篇文章主要为大家详细介绍了Python抓取框架,针对Scrapy的架构进行分析,感兴趣的小伙伴们可以参考一下
    2016-08-08
  • Python3爬楼梯算法示例

    Python3爬楼梯算法示例

    这篇文章主要介绍了Python3爬楼梯算法,涉及Python基于面向对象的字符串遍历、切片、运算等相关操作技巧,需要的朋友可以参考下
    2019-03-03
  • numpy数组拼接简单示例

    numpy数组拼接简单示例

    这篇文章主要介绍了numpy数组拼接简单示例,涉及对numpy数组的介绍,numpy数组的属性等内容,具有一定借鉴价值,需要的朋友可以参考下。
    2017-12-12
  • Python中执行JavaScript实现数据抓取的多种方法

    Python中执行JavaScript实现数据抓取的多种方法

    JavaScript是一门强大的脚本语言,广泛应用于网页前端开发、构建交互式用户界面以及处理各种客户端端任务,有时可能需要在Python环境中执行JavaScript代码,本文将介绍多种方法,帮助你在Python中执行 JavaScript代码,并提供详尽的示例代码,使你能够轻松掌握这一技能
    2023-11-11
  • Python MD5文件生成码

    Python MD5文件生成码

    用python实现文件md5生成码核心实现代码。
    2009-01-01
  • Python读取图片EXIF信息类库介绍和使用实例

    Python读取图片EXIF信息类库介绍和使用实例

    这篇文章主要介绍了Python读取图片EXIF信息类库介绍和使用实例,例如Python Imaging Library、EXIF.py等,需要的朋友可以参考下
    2014-07-07
  • 详解Python中open()函数指定文件打开方式的用法

    详解Python中open()函数指定文件打开方式的用法

    well,我们这里所指的文件打开方式并不是指调用什么应用程序去打开某个文件,而是只读只写或者二进制等的打开方式,这里我们就来详解Python中open()函数指定文件打开方式的用法
    2016-06-06
  • Python内置函数详细解析

    Python内置函数详细解析

    这篇文章主要介绍了Python内置函数详细解析,Python 自带了很多的内置函数,极大地方便了我们的开发,下文小编总结了一些内置函数的相关内容,需要的小伙伴可以参考一下
    2022-05-05

最新评论