C++11中std::async的使用详解

 更新时间:2020年02月03日 09:04:56   作者:fengbingchun  
这篇文章主要介绍了C++11中std::async的使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

C++11中的std::async是个模板函数。std::async异步调用函数,在某个时候以Args作为参数(可变长参数)调用Fn,无需等待Fn执行完成就可返回,返回结果是个std::future对象。Fn返回的值可通过std::future对象的get成员函数获取。一旦完成Fn的执行,共享状态将包含Fn返回的值并ready。

std::async有两个版本:

1.无需显示指定启动策略,自动选择,因此启动策略是不确定的,可能是std::launch::async,也可能是std::launch::deferred,或者是两者的任意组合,取决于它们的系统和特定库实现。

2.允许调用者选择特定的启动策略。

std::async的启动策略类型是个枚举类enum class launch,包括:

1. std::launch::async:异步,启动一个新的线程调用Fn,该函数由新线程异步调用,并且将其返回值与共享状态的访问点同步。

2. std::launch::deferred:延迟,在访问共享状态时该函数才被调用。对Fn的调用将推迟到返回的std::future的共享状态被访问时(使用std::future的wait或get函数)。

参数Fn:可以为函数指针、成员指针、任何类型的可移动构造的函数对象(即类定义了operator()的对象)。Fn的返回值或异常存储在共享状态中以供异步的std::future对象检索。

参数Args:传递给Fn调用的参数,它们的类型应是可移动构造的。

返回值:当Fn执行结束时,共享状态的std::future对象准备就绪。std::future的成员函数get检索的值是Fn返回的值。当启动策略采用std::launch::async时,即使从不访问其共享状态,返回的std::future也会链接到被创建线程的末尾。在这种情况下,std::future的析构函数与Fn的返回同步。

std::future介绍参考:https://www.jb51.net/article/179229.htm

详细用法见下面的测试代码,下面是从其他文章中copy的测试代码,部分作了调整,详细内容介绍可以参考对应的reference:

#include "future.hpp"
#include <iostream>
#include <future>
#include <chrono>
#include <utility>
#include <thread>
#include <functional>
#include <memory>
#include <exception> 
#include <numeric>
#include <vector>
#include <cmath>
#include <string>
#include <mutex>
 
namespace future_ {
 
///////////////////////////////////////////////////////////
// reference: http://www.cplusplus.com/reference/future/async/
int test_async_1()
{
 auto is_prime = [](int x) {
 std::cout << "Calculating. Please, wait...\n";
 for (int i = 2; i < x; ++i) if (x%i == 0) return false;
 return true;
 };
 
 // call is_prime(313222313) asynchronously:
 std::future<bool> fut = std::async(is_prime, 313222313);
 
 std::cout << "Checking whether 313222313 is prime.\n";
 // ...
 
 bool ret = fut.get(); // waits for is_prime to return
 if (ret) std::cout << "It is prime!\n";
 else std::cout << "It is not prime.\n";
 
 return 0;
}
 
///////////////////////////////////////////////////////////
// reference: http://www.cplusplus.com/reference/future/launch/
int test_async_2()
{
 auto print_ten = [](char c, int ms) {
 for (int i = 0; i < 10; ++i) {
  std::this_thread::sleep_for(std::chrono::milliseconds(ms));
  std::cout << c;
 }
 };
 
 std::cout << "with launch::async:\n";
 std::future<void> foo = std::async(std::launch::async, print_ten, '*', 100);
 std::future<void> bar = std::async(std::launch::async, print_ten, '@', 200);
 // async "get" (wait for foo and bar to be ready):
 foo.get(); // 注:注释掉此句,也会输出'*'
 bar.get();
 std::cout << "\n\n";
 
 std::cout << "with launch::deferred:\n";
 foo = std::async(std::launch::deferred, print_ten, '*', 100);
 bar = std::async(std::launch::deferred, print_ten, '@', 200);
 // deferred "get" (perform the actual calls):
 foo.get(); // 注:注释掉此句,则不会输出'**********'
 bar.get();
 std::cout << '\n';
 
 return 0;
}
 
///////////////////////////////////////////////////////////
// reference: https://en.cppreference.com/w/cpp/thread/async
std::mutex m;
 
struct X {
 void foo(int i, const std::string& str) {
 std::lock_guard<std::mutex> lk(m);
 std::cout << str << ' ' << i << '\n';
 }
 void bar(const std::string& str) {
 std::lock_guard<std::mutex> lk(m);
 std::cout << str << '\n';
 }
 int operator()(int i) {
 std::lock_guard<std::mutex> lk(m);
 std::cout << i << '\n';
 return i + 10;
 }
};
 
template <typename RandomIt>
int parallel_sum(RandomIt beg, RandomIt end)
{
 auto len = end - beg;
 if (len < 1000)
 return std::accumulate(beg, end, 0);
 
 RandomIt mid = beg + len / 2;
 auto handle = std::async(std::launch::async, parallel_sum<RandomIt>, mid, end);
 int sum = parallel_sum(beg, mid);
 return sum + handle.get();
}
 
int test_async_3()
{
 std::vector<int> v(10000, 1);
 std::cout << "The sum is " << parallel_sum(v.begin(), v.end()) << '\n';
 
 X x;
 // Calls (&x)->foo(42, "Hello") with default policy:
 // may print "Hello 42" concurrently or defer execution
 auto a1 = std::async(&X::foo, &x, 42, "Hello");
 // Calls x.bar("world!") with deferred policy
 // prints "world!" when a2.get() or a2.wait() is called
 auto a2 = std::async(std::launch::deferred, &X::bar, x, "world!");
 // Calls X()(43); with async policy
 // prints "43" concurrently
 auto a3 = std::async(std::launch::async, X(), 43);
 a2.wait();           // prints "world!"
 std::cout << a3.get() << '\n'; // prints "53"
 
 return 0;
} // if a1 is not done at this point, destructor of a1 prints "Hello 42" here
 
///////////////////////////////////////////////////////////
// reference: https://thispointer.com/c11-multithreading-part-9-stdasync-tutorial-example/
int test_async_4()
{
 using namespace std::chrono;
 
 auto fetchDataFromDB = [](std::string recvdData) {
 // Make sure that function takes 5 seconds to complete
 std::this_thread::sleep_for(seconds(5));
 //Do stuff like creating DB Connection and fetching Data
 return "DB_" + recvdData;
 };
 
 auto fetchDataFromFile = [](std::string recvdData) {
 // Make sure that function takes 5 seconds to complete
 std::this_thread::sleep_for(seconds(5));
 //Do stuff like fetching Data File
 return "File_" + recvdData;
 };
 
 // Get Start Time
 system_clock::time_point start = system_clock::now();
 
 std::future<std::string> resultFromDB = std::async(std::launch::async, fetchDataFromDB, "Data");
 
 //Fetch Data from File
 std::string fileData = fetchDataFromFile("Data");
 
 //Fetch Data from DB
 // Will block till data is available in future<std::string> object.
 std::string dbData = resultFromDB.get();
 
 // Get End Time
 auto end = system_clock::now();
 auto diff = duration_cast <std::chrono::seconds> (end - start).count();
 std::cout << "Total Time Taken = " << diff << " Seconds" << std::endl;
 
 //Combine The Data
 std::string data = dbData + " :: " + fileData;
 //Printing the combined Data
 std::cout << "Data = " << data << std::endl;
 
 return 0;
}
 
} // namespace future_

GitHub:https://github.com/fengbingchun/Messy_Test

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • 浅谈C++继承中的名字查找

    浅谈C++继承中的名字查找

    下面小编就为大家带来一篇浅谈C++继承中的名字查找。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-01-01
  • C++哈希应用之位图,哈希切分与布隆过滤器详解

    C++哈希应用之位图,哈希切分与布隆过滤器详解

    这篇文章主要为大家详细介绍了C++哈希应用中的位图、哈希切分与布隆过滤器,文中的示例代码讲解详细,具有一定的学习价值,需要的可以参考一下
    2023-04-04
  • c语言处理函数调用的方法

    c语言处理函数调用的方法

    函数就是一段封装好的,可以重复使用的代码,它使得我们的程序更加模块化,不需要编写大量重复的代码。这篇文章主要介绍了c语言是如何处理函数调用的?需要的朋友可以参考下
    2021-11-11
  • c语言结构体字节对齐的实现方法

    c语言结构体字节对齐的实现方法

    在c语言的结构体里面一般会按照某种规则去进行字节对齐。本文就来介绍一下如何实现,具有一定的参考价值,感兴趣的可以了解下
    2021-07-07
  • 用C语言实现简单的三子棋

    用C语言实现简单的三子棋

    这篇文章主要为大家详细介绍了用C语言实现三子棋,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-06-06
  • Objective-C限制函数调用的频率详解

    Objective-C限制函数调用的频率详解

    这篇文章主要给大家介绍了关于Objective-C限制函数调用的频率的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧。
    2017-12-12
  • C语言实现三子棋游戏简易版

    C语言实现三子棋游戏简易版

    这篇文章主要为大家详细介绍了C语言实现三子棋游戏简易版,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-07-07
  • C++中单调栈的基本性质介绍

    C++中单调栈的基本性质介绍

    这篇文章主要介绍了单调栈的基本性质介绍,本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下
    2021-07-07
  • 关于C++中菱形继承和虚继承的问题总结

    关于C++中菱形继承和虚继承的问题总结

    C++的三大特性为:封装,继承,多态。但是在继承中,存在一些使用方面的问题需要注意,下面这篇文章主要给大家总结介绍了关于C++中菱形继承和虚继承的问题,需要的朋友可以参考借鉴,下面来一起看看吧。
    2017-08-08
  • 利用C++模拟实现STL容器:list

    利用C++模拟实现STL容器:list

    列表是一种顺序容器,它允许在序列中的任何位置执行常量时间插入和删除操作,并允许在两个方向上进行迭代。本文将利用C++模拟实现list,希望对大家有所帮助
    2022-12-12

最新评论