解决TensorFlow GPU版出现OOM错误的问题
更新时间:2020年02月03日 10:07:18 作者:lzher0
今天小编就为大家分享一篇解决TensorFlow GPU版出现OOM错误的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
问题:
在使用mask_rcnn预测自己的数据集时,会出现下面错误:
ResourceExhaustedError: OOM when allocating tensor with shape[1,512,1120,1120] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[{{node rpn_model/rpn_conv_shared/convolution}} = Conv2D[T=DT_FLOAT, data_format="NCHW", dilations=[1, 1, 1, 1], padding="SAME", strides=[1, 1, 1, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](fpn_p2/BiasAdd, rpn_conv_shared/kernel/read)]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. [[{{node roi_align_mask/strided_slice_17/_4277}} = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_3068_roi_align_mask/strided_slice_17", tensor_type=DT_INT32, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
原因:
一是、因为图片尺寸为3200*4480,图片的尺寸太大。
二是、我使用的是TensorFlow GPU版,而我GPU的显存只有8G,导致显存不够。
解决:
一是、将图片尺寸改小,小到占用的内存比显存。
二是、不使用GPU进行预测,只使用CPU预测,因为一般CPU内存要大于显存的。但装的又是GPU版的TensorFlow,所以需要在预测程序进行更改。
程序在前两行加入下面代码:
import os os.environ["CUDA_VISIBLE_DEVICES"] = ""
引号里填的是GPU的序号,不填的时候代表不使用GPU。
以上这篇解决TensorFlow GPU版出现OOM错误的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
Python Web框架Flask中使用新浪SAE云存储实例
这篇文章主要介绍了Python Web框架Flask中使用新浪SAE云存储实例,本文是对SAE云存储的简单封装,需要的朋友可以参考下2015-02-02
最新评论