keras tensorflow 实现在python下多进程运行
如下所示:
from multiprocessing import Process import os def training_function(...): import keras # 此处需要在子进程中 ... if __name__ == '__main__': p = Process(target=training_function, args=(...,)) p.start()
原文地址:https://stackoverflow.com/questions/42504669/keras-tensorflow-and-multiprocessing-in-python
1、DO NOT LOAD KERAS TO YOUR MAIN ENVIRONMENT. If you want to load Keras / Theano / TensorFlow do it only in the function environment. E.g. don't do this:
import keras def training_function(...): ...
but do the following:
def training_function(...): import keras ...
Run work connected with each model in a separate process: I'm usually creating workers which are making the job (like e.g. training, tuning, scoring) and I'm running them in separate processes. What is nice about it that whole memory used by this process is completely freedwhen your process is done. This helps you with loads of memory problems which you usually come across when you are using multiprocessing or even running multiple models in one process. So this looks e.g. like this:
def _training_worker(train_params): import keras model = obtain_model(train_params) model.fit(train_params) send_message_to_main_process(...) def train_new_model(train_params): training_process = multiprocessing.Process(target=_training_worker, args = train_params) training_process.start() get_message_from_training_process(...) training_process.join()
Different approach is simply preparing different scripts for different model actions. But this may cause memory errors especially when your models are memory consuming. NOTE that due to this reason it's better to make your execution strictly sequential.
以上这篇keras tensorflow 实现在python下多进程运行就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
使用Python Flask构建轻量级灵活的Web应用实例探究
Flask是一个流行的Python Web框架,以其轻量级、灵活和易学的特性受到开发者的喜爱,本文将深入探讨Flask框架的各个方面,通过详实的示例代码,帮助大家更全面地了解和掌握这一强大的工具,2024-01-01
最新评论