Python reshape的用法及多个二维数组合并为三维数组的实例

 更新时间:2020年02月07日 10:25:32   作者:bebr  
今天小编就为大家分享一篇Python reshape的用法及多个二维数组合并为三维数组的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

reshape(shape) : 不改变数组元素,返回一个shape形状的数组,原数组不变。是对每行元素进行处理

resize(shape) : 与.reshape()功能一致,但修改原数组

In [1]: a = np.arange(20)
#原数组不变
In [2]: a.reshape([4,5])
Out[2]:
array([[ 0, 1, 2, 3, 4],
  [ 5, 6, 7, 8, 9],
  [10, 11, 12, 13, 14],
  [15, 16, 17, 18, 19]])
 
In [3]: a
Out[3]:
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
  17, 18, 19])
 
#修改原数组
In [4]: a.resize([4,5])
 
In [5]: a
Out[5]:
array([[ 0, 1, 2, 3, 4],
  [ 5, 6, 7, 8, 9],
  [10, 11, 12, 13, 14],
  [15, 16, 17, 18, 19]])

.swapaxes(ax1,ax2) : 将数组n个维度中两个维度进行调换,不改变原数组

In [6]: a.swapaxes(1,0)
Out[6]:
array([[ 0, 5, 10, 15],
  [ 1, 6, 11, 16],
  [ 2, 7, 12, 17],
  [ 3, 8, 13, 18],
  [ 4, 9, 14, 19]])

.flatten() : 对数组进行降维,返回折叠后的一维数组,原数组不变

In [7]: a.flatten()
Out[7]:
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
  17, 18, 19])

将多个二维数组合并为一个三维数组

方法一:

对于两个(或者多个)同一维度的矩阵,直接利用np.array()重新构造一个array,这样可以变相起到扩展维数的作用。例如:

import numpy as np
 
a = np.array([[1,2,3],[4,5,6]])
b = np.array([[2,2,3],[4,5,6]])
c = np.array([[3,2,3],[4,5,6]])
print('矩阵a:\n',a)
print('维数:',a.shape)
 
com = np.array([a,b,c])
print('合并矩阵:\n',com)
print('维数:',com.shape)
 
输出结果为:
 
矩阵a:
 [[1 2 3]
 [4 5 6]]
维数: (2, 3)
合并矩阵:
 [[[1 2 3]
 [4 5 6]]
 
 [[2 2 3]
 [4 5 6]]
 
 [[3 2 3]
 [4 5 6]]]
维数: (3, 2, 3)

方法二:

但是,如果两个array,使用方法一时会出现如下结果:

import numpy as np
 
aa = np.array([[[1,2,3],[4,5,6]],[[2,2,3],[4,5,6]],[[3,2,3],[4,5,6]]])
a = np.array([[4,2,3],[4,5,6]])
 
com = np.array([aa,a])
print('合并矩阵:\n',com)
print('维数:',com.shape)
 
输出结果:
 
合并矩阵:
 [array([[[1, 2, 3],
  [4, 5, 6]],
 
  [[2, 2, 3],
  [4, 5, 6]],
 
  [[3, 2, 3],
  [4, 5, 6]]])
 array([[4, 2, 3],
  [4, 5, 6]])]
维数: (2,)

可以看到:输出的维数不对,以上方法就不适用了。

那么,我们就需要利用np.append和array.reshape()函数对数组进行拼接之后重组,具体实现如下:

import numpy as np
 
aa = np.array([[[1,2,3],[4,5,6]],[[2,2,3],[4,5,6]],[[3,2,3],[4,5,6]]])
a = np.array([[4,2,3],[4,5,6]])
data = np.append(aa,a)#先拼接成一个行向量
print(data)
 
dim = aa.shape#获取原矩阵的维数
print('原矩阵维数:',dim)
data1 = data.reshape(dim[0]+1,dim[1],dim[2])#再通过原矩阵的维数重新组合
 
print('合并矩阵:\n',data1)
print('维数:',data1.shape)

现在来看一下用reshape将二维数据升为三维后的数据分布情况:

import numpy as np
b = np.arange(36).reshape((6,6))
b1 = b.reshape(2,3,6)

b的元素:

b1的元素:

可以看到,原来6*6的矩阵被分为了2个3*6的矩阵。每一行的数据分布并没有改变,只是将前3行划为一个维度,然后将后三行划为另一个维度。

b1.reshape(6,6)

如果用这条命令,则数据又被还原了回去,与b的一样。

b1.reshape(3,12)

如果用的是reshape(3,12),则相当于将数据首先拉伸为1维的,然后再将一维数据重组为3*12

方法三:

相比于前两种方法,这种方法可谓“曲线救国”之典范,具体思路是:先转化成list,拼接后再转化回去。

这是因为list中的append()函数可以在添加函数的时候不改变原来list的维度。虽然没有对这种方法进行一个速度测试,但直觉来看时间复杂度挺高的,建议慎用。

aa = np.array([[[1,2,3],[4,5,6]],[[2,2,3],[4,5,6]],[[3,2,3],[4,5,6]]])
a = np.array([[4,2,3],[4,5,6]])
 
#将array转换成list
aa = aa.tolist(aa)
a = a.list(a)
 
aa.append(a)#注意与方法二中np.append()用法的区别
com = np.array(aa)
print(com.shape)
 
输出结果:
 
合并矩阵:
  [[[1 2 3]
  [4 5 6]]
 
  [[2 2 3]
  [4 5 6]]
 
  [[3 2 3]
  [4 5 6]]
  
  [[4 2 3]
  [4, 5, 6]]]
维数: (4,2,3)

这里注意:

两种类型的相互转换函数:

array转list:a = a.tolist()

list转array:a =np.array(a)

以上这篇Python reshape的用法及多个二维数组合并为三维数组的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • pandas中query()用法小结

    pandas中query()用法小结

    query()方法是一个功能强大的函数,允许用户通过字符串表达式来筛选DataFrame中的数据,本文就来介绍一下pandas中query()用法,感兴趣的可以了解一下
    2024-03-03
  • python字符串定义的三种方式

    python字符串定义的三种方式

    在Python中,字符串是一个非常重要的数据类型,可用来存储和操作文本数据,本文主要介绍了python字符串定义的三种方式,具有一定的参考价值,感兴趣的可以了解一下
    2023-05-05
  • python字典各式各样操作从基础到高级全面示例详解

    python字典各式各样操作从基础到高级全面示例详解

    在Python中,字典(Dictionary)是一种强大而灵活的数据结构,它允许你存储和检索键值对,本文将深入探讨Python中各式各样的字典操作,包括基本操作、高级操作以及一些实用的技巧,通过全面的示例代码,将展示如何充分发挥字典在Python编程中的优势
    2023-12-12
  • Python实现k-means算法

    Python实现k-means算法

    这篇文章主要为大家详细介绍了Python实现k-means算法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-02-02
  • pygame实现井字棋之第二步逻辑实现

    pygame实现井字棋之第二步逻辑实现

    这篇文章主要介绍了pygame实现井字棋之第二步逻辑实现,文中有非常详细的代码示例,对正在学习python的小伙伴们有非常好的帮助,需要的朋友可以参考下
    2021-05-05
  • Python+OpenCV图片局部区域像素值处理改进版详解

    Python+OpenCV图片局部区域像素值处理改进版详解

    这篇文章主要为大家详细介绍了Python+OpenCV图片局部区域像素值处理的改进版,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-01-01
  • python删除过期文件的方法

    python删除过期文件的方法

    这篇文章主要介绍了python删除过期文件的方法,涉及Python日期与文件的相关操作技巧,需要的朋友可以参考下
    2015-05-05
  • python利用platform模块获取系统信息

    python利用platform模块获取系统信息

    这篇文章主要介绍了python利用platform模块获取系统信息,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2020-10-10
  • python监控网卡流量并使用graphite绘图的示例

    python监控网卡流量并使用graphite绘图的示例

    这篇文章主要介绍了python监控网卡流量并使用graphite绘图的示例,需要的朋友可以参考下
    2014-04-04
  • python 动态渲染 mysql 配置文件的示例

    python 动态渲染 mysql 配置文件的示例

    这篇文章主要介绍了python 动态渲染 mysql 配置文件的示例,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2020-11-11

最新评论