TensorFLow 变量命名空间实例

 更新时间:2020年02月11日 14:56:37   作者:man_world  
今天小编就为大家分享一篇TensorFLow 变量命名空间实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

一、name_scope

with tf.name_scope(name):

name_scope: 为了更好地管理变量的命名空间而提出的。比如在 tensorboard 中,因为引入了 name_scope, 我们的 Graph 看起来才井然有序。

name_scope 对 get_variable 创建变量的 name 没有影响,即 get_variable 创建的变量不在 name_scope 这个命名空间中

二、variable_scope

with tf.variable_scope(name_or_scope, reuse=None):

variable_scope: 大部分情况下,跟 tf.get_variable() 配合使用,实现变量共享的功能

可通过tf.get_variable_scope().reuse == True/False 判断参变量是否共享

当前变量作用域可以用tf.get_variable_scope()进行检索并且reuse 标签可以通过调用tf.get_variable_scope().reuse_variables()设置为True

三、共享参变量

1、方法

使用 tf.Variable() 创建同一个 name 的变量(操作名不同),均不会报错,但系统会自动修改 name(实质还是不让共享参变量)

使用 tf.get_varible() 创建同一个 name 的变量(操作名不同),均会报错(为了避免无意识的参变量复用造成的错误)

我们可以在 variable_scope 中使用 tf.get_variable() 创建变量,并通过 with tf.variable_scope(name_or_scope, reuse=True) 来共享参变量:

reuse=True:将只能获取命名空间中已经创建过的变量,如果变量不存在,则tf.get_variable函数将报错。

reuse=None / False:tf.get_variable操作将创建新的变量,如果同名的变量已经存在,则tf.get_variable函数将报错。

2、代码示例

# 下面是定义一个卷积层的通用方式
def conv_relu(input, kernel_shape, bias_shape):
  # Create variable named "weights".
  weights = tf.get_variable("weights", kernel_shape,
    initializer=tf.random_normal_initializer())
  # Create variable named "biases".
  biases = tf.get_variable("biases", bias_shape,
    initializer=tf.constant_intializer(0.0))
  conv = tf.nn.conv2d(input, weights,
    strides=[1, 1, 1, 1], padding='SAME')
  return tf.nn.relu(conv + biases)


# 定义一个图片过滤器
def my_image_filter(input_images):
  with tf.variable_scope("conv1"):
    # Variables created here will be named "conv1/weights", "conv1/biases".
    relu1 = conv_relu(input_images, [5, 5, 32, 32], [32])
  with tf.variable_scope("conv2"):
    # Variables created here will be named "conv2/weights", "conv2/biases".
    return conv_relu(relu1, [5, 5, 32, 32], [32])


# 实验一:调用 my_image_filter() 两次
result1 = my_image_filter(image1)
result2 = my_image_filter(image2)
>>> Raises ValueError(... conv1/weights already exists ...), tf.get_variable()会检测已经存在的变量是否已经共享


# 解决方法一, 可以在设计网络时加上一个布尔型的 reuse 参数 
with tf.variable_scope("image_filters"):
  result1 = my_image_filter(image1)
with tf.variable_scope("image_filters", reuse=True):
  result2 = my_image_filter(image2)


# 解决方法二
with tf.variable_scope("image_filters") as scope:
  # 下面我们两次调用 my_image_filter 函数,但是由于引入了变量共享机制
  # 可以看到我们只是创建了一遍网络结构。
  result1 = my_image_filter(image1)
  scope.reuse_variables()
  result2 = my_image_filter(image2)


# 解决方法三
with tf.variable_scope("image_filters") as scope:
  result1 = my_image_filter(image1)
with tf.variable_scope(scope, reuse=True):
  result2 = my_image_filter(image2)


# 打印出所有的可训练参变量
vs = tf.trainable_variables()
print('There are %d trainable_variables in the Graph: ' % len(vs))
for v in vs:
  print(v)


# 输出结果证明确实:参变量共享,因为只有四个变量,没有创建新的变量。
There are 4 trainable_variables in the Graph: 
Tensor("image_filters/conv1/weights/read:0", shape=(5, 5, 32, 32), dtype=float32)
Tensor("image_filters/conv1/biases/read:0", shape=(32,), dtype=float32)
Tensor("image_filters/conv2/weights/read:0", shape=(5, 5, 32, 32), dtype=float32)
Tensor("image_filters/conv2/biases/read:0", shape=(32,), dtype=float32)

四、取出所有可训练参数

# Returns all variables created with trainable=True in a var_list
var_list = tf.trainable_variables()

init = tf.global_variables_initializer()
sess.run(init)

for var in var_list:
  sess.run(var)

以上这篇TensorFLow 变量命名空间实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python多进程写入同一文件的方法

    Python多进程写入同一文件的方法

    今天小编就为大家分享一篇Python多进程写入同一文件的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • 解决python给列表里添加字典时被最后一个覆盖的问题

    解决python给列表里添加字典时被最后一个覆盖的问题

    今天小编就为大家分享一篇解决python给列表里添加字典时被最后一个覆盖的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • Python使用grequests(gevent+requests)并发发送请求过程解析

    Python使用grequests(gevent+requests)并发发送请求过程解析

    这篇文章主要介绍了Python使用grequests并发发送请求过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-09-09
  • Python调用pytdx的代码示例

    Python调用pytdx的代码示例

    本文主要介绍了Python调用pytdx的代码示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-01-01
  • AUC计算方法与Python实现代码

    AUC计算方法与Python实现代码

    今天小编就为大家分享一篇AUC计算方法与Python实现代码,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • Python中requests模块的请求参数详解

    Python中requests模块的请求参数详解

    这篇文章主要介绍了Python中requests模块的请求参数详解,requests模块是一个网络请求模块,可以帮助我们模拟成客户端去请求服务器的数据,我们今天就是主要针对这个模块进行学习,需要的朋友可以参考下
    2023-08-08
  • Python初学者需要注意的事项小结(python2与python3)

    Python初学者需要注意的事项小结(python2与python3)

    这篇文章主要介绍了Python初学者需要注意的事项小结,包括了python2与python3的一些区别,需要的朋友可以参考下
    2018-09-09
  • Python 3.7新功能之dataclass装饰器详解

    Python 3.7新功能之dataclass装饰器详解

    这篇文章主要给大家介绍了关于Python 3.7新功能之dataclass装饰器的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧。
    2018-04-04
  • Python实现控制台中的进度条功能代码

    Python实现控制台中的进度条功能代码

    下面小编就为大家分享一篇Python实现控制台中的进度条功能代码,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2017-12-12
  • Python绘制动态的521玫瑰花

    Python绘制动态的521玫瑰花

    敲了这么多年代码,每年都得画一些心啊花啊什么的,所以现在常规的已经有些倦怠了,至少也得来个三维图形才看着比较合理,所以本文就来绘制一个动态的玫瑰花吧
    2023-05-05

最新评论