python多项式拟合之np.polyfit 和 np.polyld详解

 更新时间:2020年02月18日 09:54:11   作者:落日峡谷  
这篇文章主要介绍了python多项式拟合之np.polyfit 和 np.polyld的实例代码,python数据拟合主要可采用numpy库,库的安装可直接用pip install numpy等,需要的朋友跟随小编一起学习吧

python数据拟合主要可采用numpy库,库的安装可直接用pip install numpy等。

1. 原始数据:假如要拟合的数据yyy来自sin函数,np.sin

import numpy as np
import matplotlib.pyplot as plt

xxx = np.arange(0, 1000) # x值,此时表示弧度
yyy = np.sin(xxx*np.pi/180) #函数值,转化成度

2. 测试不同阶的多项式,例如7阶多项式拟合,使用np.polyfit拟合,np.polyld得到多项式系数

z1 = np.polyfit(xxx, yyy, 7) # 用7次多项式拟合,可改变多项式阶数;
p1 = np.poly1d(z1) #得到多项式系数,按照阶数从高到低排列
print(p1) #显示多项式

3. 求对应xxx的各项拟合函数值

yvals=p1(xxx) # 可直接使用yvals=np.polyval(z1,xxx)

4. 绘图如下

plt.plot(xxx, yyy, '*',label='original values')
plt.plot(xxx, yvals, 'r',label='polyfit values')
plt.xlabel('x axis')
plt.ylabel('y axis')
plt.legend(loc=4) # 指定legend在图中的位置,类似象限的位置
plt.title('polyfitting')
plt.show()

5. np.polyfit函数:采用的是最小二次拟合,numpy.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False),前三个参数是必须的

官方文档:https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.polyfit.html

6. np.polyld函数:得到多项式系数,主要有三个参数

 A one-dimensional polynomial class.

  A convenience class, used to encapsulate "natural" operations on
  polynomials so that said operations may take on their customary
  form in code (see Examples).

  Parameters
  ----------
  c_or_r : array_like
    The polynomial's coefficients, in decreasing powers, or if
    the value of the second parameter is True, the polynomial's
    roots (values where the polynomial evaluates to 0). For example,
    ``poly1d([1, 2, 3])`` returns an object that represents
    :math:`x^2 + 2x + 3`, whereas ``poly1d([1, 2, 3], True)`` returns
    one that represents :math:`(x-1)(x-2)(x-3) = x^3 - 6x^2 + 11x -6`.
  r : bool, optional
    If True, `c_or_r` specifies the polynomial's roots; the default
    is False.
  variable : str, optional
    Changes the variable used when printing `p` from `x` to `variable`
    (see Examples).


参数1表示:在没有参数2(也就是参数2默认False时),参数1是一个数组形式,且表示从高到低的多项式系数项,例如参数1为[4,5,6]表示:

参数2表示:为True时,表示将参数1中的参数作为根来形成多项式,即参数1为[4,5,6]时表示:(x-4)(x-5)(x-6)=0,也就是:

参数3表示:换参数标识,用惯了x,可以用 t,s之类的

用法:

1. 直接进行运算,例如多项式的平方,分别得到

xx=np.poly1d([1,2,3])
print(xx)
yy=xx**2 #求平方,或者用 xx * xx
print(yy)


2. 求值:

yy(1) = 36

3. 求根:即等式为0时的未知数值

yy.r

4. 得到系数形成数组:

yy.c 为:array([ 1, 4, 10, 12, 9])

5. 返回最高次幂数:

yy.order = 4

6. 返回系数:

yy[0] —— 表示幂为0的系数

yy[1] —— 表示幂为1的系数

总结

以上所述是小编给大家介绍的python多项式拟合之np.polyfit 和 np.polyld详解,希望对大家有所帮助,也非常感谢大家对脚本之家网站的支持!

相关文章

最新评论