基于Pytorch SSD模型分析

 更新时间:2020年02月18日 14:35:05   作者:DaneAI  
今天小编就为大家分享一篇基于Pytorch SSD模型分析,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

本文参考github上SSD实现,对模型进行分析,主要分析模型组成及输入输出大小.SSD网络结构如下图:

每输入的图像有8732个框输出;

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
#from layers import *
from data import voc, coco
import os
base = {
 '300': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M',
   512, 512, 512],
 '512': [],
}
extras = {
 '300': [256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256],
 '512': [],
}
mbox = {
 '300': [4, 6, 6, 6, 4, 4], # number of boxes per feature map location
 '512': [],
}

VGG基础网络结构:

def vgg(cfg, i, batch_norm=False):
 layers = []
 in_channels = i
 for v in cfg:
  if v == 'M':
   layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
  elif v == 'C':
   layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)]
  else:
   conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
   if batch_norm:
    layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
   else:
    layers += [conv2d, nn.ReLU(inplace=True)]
   in_channels = v
 pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
 conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6)
 conv7 = nn.Conv2d(1024, 1024, kernel_size=1)
 layers += [pool5, conv6,
    nn.ReLU(inplace=True), conv7, nn.ReLU(inplace=True)]
 return layers
size=300
vgg=vgg(base[str(size)], 3)
print(vgg)

输出为:

Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(6, 6), dilation=(6, 6))
ReLU(inplace)
Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1))
ReLU(inplace)

SSD中添加的网络

add_extras函数构建基本的卷积层

def add_extras(cfg, i, batch_norm=False):
 # Extra layers added to VGG for feature scaling
 layers = []
 in_channels = i
 flag = False
 for k, v in enumerate(cfg):
  if in_channels != 'S':
   if v == 'S':
    layers += [nn.Conv2d(in_channels, cfg[k + 1],
       kernel_size=(1, 3)[flag], stride=2, padding=1)]
   else:
    layers += [nn.Conv2d(in_channels, v, kernel_size=(1, 3)[flag])]
   flag = not flag
  in_channels = v
 return layers
extra_layers=add_extras(extras[str(size)], 1024)
for layer in extra_layers:
 print(layer)

输出为:

Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1))
Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1))

multibox函数得到每个特征图的默认box的位置计算网络和分类得分网络

def multibox(vgg, extra_layers, cfg, num_classes):
 loc_layers = []
 conf_layers = []
 vgg_source = [21, -2]
 for k, v in enumerate(vgg_source):
  loc_layers += [nn.Conv2d(vgg[v].out_channels,
         cfg[k] * 4, kernel_size=3, padding=1)]
  conf_layers += [nn.Conv2d(vgg[v].out_channels,
      cfg[k] * num_classes, kernel_size=3, padding=1)]
 for k, v in enumerate(extra_layers[1::2], 2):
  loc_layers += [nn.Conv2d(v.out_channels, cfg[k]
         * 4, kernel_size=3, padding=1)]
  conf_layers += [nn.Conv2d(v.out_channels, cfg[k]
         * num_classes, kernel_size=3, padding=1)]
 return vgg, extra_layers, (loc_layers, conf_layers)
base_, extras_, head_ = multibox(vgg(base[str(size)], 3), ## 产生vgg19基本模型
          add_extras(extras[str(size)], 1024), 
          mbox[str(size)], num_classes)
#mbox[str(size)]为:[4, 6, 6, 6, 4, 4]

得到的输出为:

base_为上述描述的vgg网络,extras_为extra_layers网络,head_为:

([Conv2d(512, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(1024, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(512, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(256, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(256, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(256, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))],
 [Conv2d(512, 84, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(1024, 126, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(512, 126, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(256, 126, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(256, 84, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(256, 84, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))])

SSD网络及forward函数为:

class SSD(nn.Module):
 """Single Shot Multibox Architecture
 The network is composed of a base VGG network followed by the
 added multibox conv layers. Each multibox layer branches into
  1) conv2d for class conf scores
  2) conv2d for localization predictions
  3) associated priorbox layer to produce default bounding
   boxes specific to the layer's feature map size.
 See: https://arxiv.org/pdf/1512.02325.pdf for more details.

 Args:
  phase: (string) Can be "test" or "train"
  size: input image size
  base: VGG16 layers for input, size of either 300 or 500
  extras: extra layers that feed to multibox loc and conf layers
  head: "multibox head" consists of loc and conf conv layers
 """

 def __init__(self, phase, size, base, extras, head, num_classes):
  super(SSD, self).__init__()
  self.phase = phase
  self.num_classes = num_classes 
  self.cfg = (coco, voc)[num_classes == 21]
  self.priorbox = PriorBox(self.cfg)
  self.priors = Variable(self.priorbox.forward(), volatile=True)
  self.size = size

  # SSD network
  self.vgg = nn.ModuleList(base)
  # Layer learns to scale the l2 normalized features from conv4_3
  self.L2Norm = L2Norm(512, 20)
  self.extras = nn.ModuleList(extras)

  self.loc = nn.ModuleList(head[0])
  self.conf = nn.ModuleList(head[1])

  if phase == 'test':
   self.softmax = nn.Softmax(dim=-1)
   self.detect = Detect(num_classes, 0, 200, 0.01, 0.45)

 def forward(self, x):
  """Applies network layers and ops on input image(s) x.

  Args:
   x: input image or batch of images. Shape: [batch,3,300,300].

  Return:
   Depending on phase:
   test:
    Variable(tensor) of output class label predictions,
    confidence score, and corresponding location predictions for
    each object detected. Shape: [batch,topk,7]

   train:
    list of concat outputs from:
     1: confidence layers, Shape: [batch*num_priors,num_classes]
     2: localization layers, Shape: [batch,num_priors*4]
     3: priorbox layers, Shape: [2,num_priors*4]
  """
  sources = list()
  loc = list()
  conf = list()

  # apply vgg up to conv4_3 relu
  for k in range(23):
   x = self.vgg[k](x) ##得到的x尺度为[1,512,38,38]

  s = self.L2Norm(x)
  sources.append(s)

  # apply vgg up to fc7
  for k in range(23, len(self.vgg)):
   x = self.vgg[k](x) ##得到的x尺寸为[1,1024,19,19]
  sources.append(x)

  # apply extra layers and cache source layer outputs
  for k, v in enumerate(self.extras):
   x = F.relu(v(x), inplace=True)
   if k % 2 == 1:
    sources.append(x)
  '''
  上述得到的x输出分别为:
  torch.Size([1, 512, 10, 10])
  torch.Size([1, 256, 5, 5])
  torch.Size([1, 256, 3, 3])
  torch.Size([1, 256, 1, 1])
  '''

  # apply multibox head to source layers
  for (x, l, c) in zip(sources, self.loc, self.conf):
   loc.append(l(x).permute(0, 2, 3, 1).contiguous())
   conf.append(c(x).permute(0, 2, 3, 1).contiguous())

  loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
  conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)
  if self.phase == "test":
   output = self.detect(
    loc.view(loc.size(0), -1, 4),     # loc preds
    self.softmax(conf.view(conf.size(0), -1,
        self.num_classes)),    # conf preds
    self.priors.type(type(x.data))     # default boxes
   )
  else:
   output = (
    loc.view(loc.size(0), -1, 4), #[1,8732,4]
    conf.view(conf.size(0), -1, self.num_classes),#[1,8732,21]
    self.priors
   )
  return output

上述代码中sources中保存的数据输出如下,即用于边框提取的特征图:

torch.Size([1, 512, 38, 38])
torch.Size([1, 1024, 19, 19])
torch.Size([1, 512, 10, 10])
torch.Size([1, 256, 5, 5])
torch.Size([1, 256, 3, 3])
torch.Size([1, 256, 1, 1])

模型输入为

x=Variable(torch.randn(1,3,300,300))

以上这篇基于Pytorch SSD模型分析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • 通过Python扫描代码关键字并进行预警的实现方法

    通过Python扫描代码关键字并进行预警的实现方法

    这篇文章主要介绍了通过Python扫描代码关键字并进行预警的实现方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-05-05
  • Python控制台输出俄罗斯方块的方法实例

    Python控制台输出俄罗斯方块的方法实例

    这篇文章主要给大家介绍了关于Python控制台输出俄罗斯方块的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-04-04
  • python 安装教程之Pycharm安装及配置字体主题,换行,自动更新

    python 安装教程之Pycharm安装及配置字体主题,换行,自动更新

    这篇文章主要介绍了python 安装教程之Pycharm安装及配置字体主题,换行,自动更新,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-03-03
  • Python SMTP配置参数并发送邮件

    Python SMTP配置参数并发送邮件

    这篇文章主要介绍了Python SMTP配置参数并发送邮件,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-06-06
  • 浅谈python numpy中nonzero()的用法

    浅谈python numpy中nonzero()的用法

    下面小编就为大家分享一篇浅谈python numpy中nonzero()的用法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • 利用Tkinter和matplotlib两种方式画饼状图的实例

    利用Tkinter和matplotlib两种方式画饼状图的实例

    下面小编就为大家带来一篇利用Tkinter和matplotlib两种方式画饼状图的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧,希望对大家有所帮助
    2017-11-11
  • Python实现将一段话txt生成字幕srt文件

    Python实现将一段话txt生成字幕srt文件

    这篇文章主要为大家详细介绍了如何利用Python实现将一段话txt生成字幕srt文件,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下
    2023-02-02
  • Python三级目录展示的实现方法

    Python三级目录展示的实现方法

    这篇文章主要介绍了Python三级目录展示的实现方法的相关资料,本文通过图文并茂的方式给大家介绍,非常不错,具有参考借鉴价值,需要的朋友可以参考下
    2016-09-09
  • Python中的优先队列(priority queue)和堆(heap)

    Python中的优先队列(priority queue)和堆(heap)

    这篇文章主要介绍了Python中的优先队列(priority queue)和堆(heap),具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-09-09
  • python playwright 自动等待和断言详解

    python playwright 自动等待和断言详解

    这篇文章主要为大家介绍了python playwright 自动等待和断言,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2021-11-11

最新评论