基于Pytorch SSD模型分析
本文参考github上SSD实现,对模型进行分析,主要分析模型组成及输入输出大小.SSD网络结构如下图:
每输入的图像有8732个框输出;
import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable #from layers import * from data import voc, coco import os
base = { '300': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M', 512, 512, 512], '512': [], } extras = { '300': [256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256], '512': [], } mbox = { '300': [4, 6, 6, 6, 4, 4], # number of boxes per feature map location '512': [], }
VGG基础网络结构:
def vgg(cfg, i, batch_norm=False): layers = [] in_channels = i for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] elif v == 'C': layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6) conv7 = nn.Conv2d(1024, 1024, kernel_size=1) layers += [pool5, conv6, nn.ReLU(inplace=True), conv7, nn.ReLU(inplace=True)] return layers
size=300 vgg=vgg(base[str(size)], 3) print(vgg)
输出为:
Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True) Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False) Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(6, 6), dilation=(6, 6)) ReLU(inplace) Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1)) ReLU(inplace)
SSD中添加的网络
add_extras函数构建基本的卷积层
def add_extras(cfg, i, batch_norm=False): # Extra layers added to VGG for feature scaling layers = [] in_channels = i flag = False for k, v in enumerate(cfg): if in_channels != 'S': if v == 'S': layers += [nn.Conv2d(in_channels, cfg[k + 1], kernel_size=(1, 3)[flag], stride=2, padding=1)] else: layers += [nn.Conv2d(in_channels, v, kernel_size=(1, 3)[flag])] flag = not flag in_channels = v return layers
extra_layers=add_extras(extras[str(size)], 1024) for layer in extra_layers: print(layer)
输出为:
Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1)) Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1)) Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1)) Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1)) Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1)) Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1))
multibox函数得到每个特征图的默认box的位置计算网络和分类得分网络
def multibox(vgg, extra_layers, cfg, num_classes): loc_layers = [] conf_layers = [] vgg_source = [21, -2] for k, v in enumerate(vgg_source): loc_layers += [nn.Conv2d(vgg[v].out_channels, cfg[k] * 4, kernel_size=3, padding=1)] conf_layers += [nn.Conv2d(vgg[v].out_channels, cfg[k] * num_classes, kernel_size=3, padding=1)] for k, v in enumerate(extra_layers[1::2], 2): loc_layers += [nn.Conv2d(v.out_channels, cfg[k] * 4, kernel_size=3, padding=1)] conf_layers += [nn.Conv2d(v.out_channels, cfg[k] * num_classes, kernel_size=3, padding=1)] return vgg, extra_layers, (loc_layers, conf_layers)
base_, extras_, head_ = multibox(vgg(base[str(size)], 3), ## 产生vgg19基本模型 add_extras(extras[str(size)], 1024), mbox[str(size)], num_classes) #mbox[str(size)]为:[4, 6, 6, 6, 4, 4]
得到的输出为:
base_为上述描述的vgg网络,extras_为extra_layers网络,head_为:
([Conv2d(512, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), Conv2d(1024, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), Conv2d(512, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), Conv2d(256, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), Conv2d(256, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), Conv2d(256, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))], [Conv2d(512, 84, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), Conv2d(1024, 126, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), Conv2d(512, 126, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), Conv2d(256, 126, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), Conv2d(256, 84, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), Conv2d(256, 84, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))])
SSD网络及forward函数为:
class SSD(nn.Module): """Single Shot Multibox Architecture The network is composed of a base VGG network followed by the added multibox conv layers. Each multibox layer branches into 1) conv2d for class conf scores 2) conv2d for localization predictions 3) associated priorbox layer to produce default bounding boxes specific to the layer's feature map size. See: https://arxiv.org/pdf/1512.02325.pdf for more details. Args: phase: (string) Can be "test" or "train" size: input image size base: VGG16 layers for input, size of either 300 or 500 extras: extra layers that feed to multibox loc and conf layers head: "multibox head" consists of loc and conf conv layers """ def __init__(self, phase, size, base, extras, head, num_classes): super(SSD, self).__init__() self.phase = phase self.num_classes = num_classes self.cfg = (coco, voc)[num_classes == 21] self.priorbox = PriorBox(self.cfg) self.priors = Variable(self.priorbox.forward(), volatile=True) self.size = size # SSD network self.vgg = nn.ModuleList(base) # Layer learns to scale the l2 normalized features from conv4_3 self.L2Norm = L2Norm(512, 20) self.extras = nn.ModuleList(extras) self.loc = nn.ModuleList(head[0]) self.conf = nn.ModuleList(head[1]) if phase == 'test': self.softmax = nn.Softmax(dim=-1) self.detect = Detect(num_classes, 0, 200, 0.01, 0.45) def forward(self, x): """Applies network layers and ops on input image(s) x. Args: x: input image or batch of images. Shape: [batch,3,300,300]. Return: Depending on phase: test: Variable(tensor) of output class label predictions, confidence score, and corresponding location predictions for each object detected. Shape: [batch,topk,7] train: list of concat outputs from: 1: confidence layers, Shape: [batch*num_priors,num_classes] 2: localization layers, Shape: [batch,num_priors*4] 3: priorbox layers, Shape: [2,num_priors*4] """ sources = list() loc = list() conf = list() # apply vgg up to conv4_3 relu for k in range(23): x = self.vgg[k](x) ##得到的x尺度为[1,512,38,38] s = self.L2Norm(x) sources.append(s) # apply vgg up to fc7 for k in range(23, len(self.vgg)): x = self.vgg[k](x) ##得到的x尺寸为[1,1024,19,19] sources.append(x) # apply extra layers and cache source layer outputs for k, v in enumerate(self.extras): x = F.relu(v(x), inplace=True) if k % 2 == 1: sources.append(x) ''' 上述得到的x输出分别为: torch.Size([1, 512, 10, 10]) torch.Size([1, 256, 5, 5]) torch.Size([1, 256, 3, 3]) torch.Size([1, 256, 1, 1]) ''' # apply multibox head to source layers for (x, l, c) in zip(sources, self.loc, self.conf): loc.append(l(x).permute(0, 2, 3, 1).contiguous()) conf.append(c(x).permute(0, 2, 3, 1).contiguous()) loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1) conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1) if self.phase == "test": output = self.detect( loc.view(loc.size(0), -1, 4), # loc preds self.softmax(conf.view(conf.size(0), -1, self.num_classes)), # conf preds self.priors.type(type(x.data)) # default boxes ) else: output = ( loc.view(loc.size(0), -1, 4), #[1,8732,4] conf.view(conf.size(0), -1, self.num_classes),#[1,8732,21] self.priors ) return output
上述代码中sources中保存的数据输出如下,即用于边框提取的特征图:
torch.Size([1, 512, 38, 38]) torch.Size([1, 1024, 19, 19]) torch.Size([1, 512, 10, 10]) torch.Size([1, 256, 5, 5]) torch.Size([1, 256, 3, 3]) torch.Size([1, 256, 1, 1])
模型输入为
x=Variable(torch.randn(1,3,300,300))
以上这篇基于Pytorch SSD模型分析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
python 安装教程之Pycharm安装及配置字体主题,换行,自动更新
这篇文章主要介绍了python 安装教程之Pycharm安装及配置字体主题,换行,自动更新,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下2020-03-03利用Tkinter和matplotlib两种方式画饼状图的实例
下面小编就为大家带来一篇利用Tkinter和matplotlib两种方式画饼状图的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧,希望对大家有所帮助2017-11-11Python中的优先队列(priority queue)和堆(heap)
这篇文章主要介绍了Python中的优先队列(priority queue)和堆(heap),具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教2022-09-09
最新评论