python中resample函数实现重采样和降采样代码
函数原型
resample(self, rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention=‘start', kind=None, loffset=None, limit=None, base=0, on=None, level=None)
比较关键的是rule,closed,label下面会随着两个用法说明
降采样
对时间数据细粒度增大,可以把每天的数据聚合成一周,可以求和或者均值的方式进行聚合
下面给出列子
times=pd.date_range('20180101',periods=30) ts=pd.Series(np.arange(1,31),index=times) ts 2018-01-01 1 2018-01-02 2 2018-01-03 3 2018-01-04 4 2018-01-05 5 2018-01-06 6 2018-01-07 7 2018-01-08 8 2018-01-09 9 2018-01-10 10 2018-01-11 11 2018-01-12 12 2018-01-13 13 2018-01-14 14 2018-01-15 15 2018-01-16 16 2018-01-17 17 2018-01-18 18 2018-01-19 19 2018-01-20 20 2018-01-21 21 2018-01-22 22 2018-01-23 23 2018-01-24 24 2018-01-25 25 2018-01-26 26 2018-01-27 27 2018-01-28 28 2018-01-29 29 2018-01-30 30 Freq: D, dtype: int32 ts_7d=ts.resample('7D').sum() ts_7d 2018-01-01 28 2018-01-08 77 2018-01-15 126 2018-01-22 175 2018-01-29 59 dtype: int32
我们看看上面代码,就是先给出一个1-30号的series,l然后聚合成左闭右开的5个区间[1,8),[8,15),[15,22),[22-29),[29-5(下个月)),每个区间的值就为单个区间值之和。由于29号往后只有29号和30号有值,所以只有两个值
下面我们看看label和closed的功能
ts_7d=ts.resample('7D',closed='right',label='left').sum() ts_7d Out[14]: 2017-12-25 1 2018-01-01 35 2018-01-08 84 2018-01-15 133 2018-01-22 182 2018-01-29 30
上面的代码,将closed改为了right,区间就变成了左开右闭,那么如果从区间还是(1,8],1就取不到,所以往前取,就是(25,1],(1,8],(8,15],(15,22],(22,29],(29,5]这6个区间
ts_7d=ts.resample('7D',closed='right',label='right').sum() ts_7d Out[15]: 2018-01-01 1 2018-01-08 35 2018-01-15 84 2018-01-22 133 2018-01-29 182 2018-02-05 30 dtype: int32
上面的代码就可以看出label=right就是指label等于右区间的值,如果label=left就是指label等于左区间的值
重采样
降低时间的细粒度,对于重采样,主要是涉及到值的填充。有下面的三种填充方法
不填充。那么对应无值的地方,用NaN代替。对应的方法是asfreq。
用前值填充。用前面的值填充无值的地方。对应的方法是ffill或者pad。
用后值填充。对应的方法是bfill,b代表back。
下面给出代码看一下
ts_7h_asfreq = ts.resample('7H').asfreq() print(ts_7h_asfreq) ts_7h_ffill = ts.resample('7H').ffill() print(ts_7h_ffill) ts_7h_bfill = ts.resample('7H').bfill() ts_7h_bfill 2018-01-01 00:00:00 1.0 2018-01-01 07:00:00 NaN 2018-01-01 14:00:00 NaN 2018-01-01 21:00:00 NaN Freq: 7H, dtype: float64 2018-01-01 00:00:00 1 2018-01-01 07:00:00 1 2018-01-01 14:00:00 1 2018-01-01 21:00:00 1 Freq: 7H, dtype: int32 Out[24]: 2018-01-01 00:00:00 1 2018-01-01 07:00:00 2 2018-01-01 14:00:00 2 2018-01-01 21:00:00 2 Freq: 7H, dtype: int32
总结
重采样和降采样一般用在时间序列里面,合理的使用降低时间维度或者降低时间细粒度多可以成为好的特征。
以上这篇python中resample函数实现重采样和降采样代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
Python基于datetime或time模块分别获取当前时间戳的方法实例
今天小编就为大家分享一篇关于Python基于datetime或time模块分别获取当前时间戳的方法实例,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧2019-02-02Django-Model数据库操作(增删改查、连表结构)详解
这篇文章主要介绍了Django-Model数据库操作(增删改查、连表结构)详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下2019-07-07
最新评论