Python多线程多进程实例对比解析
更新时间:2020年03月12日 12:43:18 作者:我太难了008
这篇文章主要介绍了Python多线程多进程实例对比解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
多线程适合于多io操作
多进程适合于耗cpu(计算)的操作
# 多进程编程 # 耗cpu的操作,用多进程编程, 对于io操作来说,使用多线程编程 import time from concurrent.futures import ThreadPoolExecutor, as_completed from concurrent.futures import ProcessPoolExecutor def fib(n): if n <= 2: return 1 return fib(n - 2) + fib(n - 1) if __name__ == '__main__': # 1. 对于耗cpu操作,多进程优于多线程 # with ThreadPoolExecutor(3) as executor: # all_task = [executor.submit(fib, num) for num in range(25, 35)] # start_time = time.time() # for future in as_completed(all_task): # data = future.result() # print(data) # print("last time :{}".format(time.time() - start_time)) # 3.905290126800537 # 多进程 ,在window环境 下必须放在main方法中执行,否则抛异常 with ProcessPoolExecutor(3) as executor: all_task = [executor.submit(fib, num) for num in range(25, 35)] start_time = time.time() for future in as_completed(all_task): data = future.result() print(data) print("last time :{}".format(time.time() - start_time)) # 2.6130592823028564
可以看到在耗cpu的应用中,多进程明显优于多线程 2.6130592823028564 < 3.905290126800537
下面模拟一个io操作
# 多进程编程 # 耗cpu的操作,用多进程编程, 对于io操作来说,使用多线程编程 import time from concurrent.futures import ThreadPoolExecutor, as_completed from concurrent.futures import ProcessPoolExecutor def io_operation(n): time.sleep(2) return n if __name__ == '__main__': # 1. 对于耗cpu操作,多进程优于多线程 # with ThreadPoolExecutor(3) as executor: # all_task = [executor.submit(io_operation, num) for num in range(25, 35)] # start_time = time.time() # for future in as_completed(all_task): # data = future.result() # print(data) # print("last time :{}".format(time.time() - start_time)) # 8.00358772277832 # 多进程 ,在window环境 下必须放在main方法中执行,否则抛异常 with ProcessPoolExecutor(3) as executor: all_task = [executor.submit(io_operation, num) for num in range(25, 35)] start_time = time.time() for future in as_completed(all_task): data = future.result() print(data) print("last time :{}".format(time.time() - start_time)) # 8.12435245513916
可以看到 8.00358772277832 < 8.12435245513916, 即是多线程比多进程更牛逼!
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
相关文章
解决import tensorflow导致jupyter内核死亡的问题
这篇文章主要介绍了解决import tensorflow导致jupyter内核死亡的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2021-02-02Python使用Selenium+BeautifulSoup爬取淘宝搜索页
这篇文章主要为大家详细介绍了Python使用Selenium+BeautifulSoup爬取淘宝搜索页,具有一定的参考价值,感兴趣的小伙伴们可以参考一下2018-02-02在Python中操作列表之List.append()方法的使用
这篇文章主要介绍了在Python中操作列表之List.append()方法的使用,是Python入门学习中的基础知识,需要的朋友可以参考下2015-05-05typing.Dict和Dict的区别及它们在Python中的用途小结
当在 Python 函数中声明一个 dictionary 作为参数时,我们一般会把 key 和 value 的数据类型声明为全局变量,而不是局部变量。,这篇文章主要介绍了typing.Dict和Dict的区别及它们在Python中的用途小结,需要的朋友可以参考下2023-06-06
最新评论