Tensorflow中的dropout的使用方法

 更新时间:2020年03月13日 08:39:44   作者:AGUILLER  
这篇文章主要介绍了Tensorflow中的dropout的使用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

Hinton在论文《Improving neural networks by preventing co-adaptation of feature detectors》中提出了Dropout。Dropout用来防止神经网络的过拟合。Tensorflow中可以通过如下3中方式实现dropout。

tf.nn.dropout

def dropout(x, keep_prob, noise_shape=None, seed=None, name=None):

其中,x为浮点类型的tensor,keep_prob为浮点类型的scalar,范围在(0,1]之间,表示x中的元素被保留下来的概率,noise_shape为一维的tensor(int32类型),表示标记张量的形状(representing the shape for randomly generated keep/drop flags),并且noise_shape指定的形状必须对x的形状是可广播的。如果x的形状是[k, l, m, n],并且noise_shape为[k, l, m, n],那么x中的每一个元素是否保留都是独立,但如果x的形状是[k, l, m, n],并且noise_shape为[k, 1, 1, n],则x中的元素沿着第0个维度第3个维度以相互独立的概率保留或者丢弃,而元素沿着第1个维度和第2个维度要么同时保留,要么同时丢弃。

关于Tensorflow中的广播机制,可以参考《TensorFlow 和 NumPy 的 Broadcasting 机制探秘

最终,会输出一个与x形状相同的张量ret,如果x中的元素被丢弃,则在ret中的对应位置元素为0,如果x中的元素被保留,则在ret中对应位置上的值为,这么做是为了使得ret中的元素之和等于x中的元素之和。

tf.layers.dropout

def dropout(inputs,
   rate=0.5,
   noise_shape=None,
   seed=None,
   training=False,
   name=None):

参数inputs为输入的张量,与tf.nn.dropout的参数keep_prob不同,rate指定元素被丢弃的概率,如果rate=0.1,则inputs中10%的元素将被丢弃,noise_shape与tf.nn.dropout的noise_shape一致,training参数用来指示当前阶段是出于训练阶段还是测试阶段,如果training为true(即训练阶段),则会进行dropout,否则不进行dropout,直接返回inputs。

自定义稀疏张量的dropout

上述的两种方法都是针对dense tensor的dropout,但有的时候,输入可能是稀疏张量,仿照tf.nn.dropout和tf.layers.dropout的内部实现原理,自定义稀疏张量的dropout。

def sparse_dropout(x, keep_prob, noise_shape):
 keep_tensor = keep_prob + tf.random_uniform(noise_shape)
 drop_mask = tf.cast(tf.floor(keep_tensor), dtype=tf.bool)
 out = tf.sparse_retain(x, drop_mask)
 return out * (1.0/keep_prob)

其中,参数x和keep_prob与tf.nn.dropout一致,noise_shape为x中非空元素的个数,如果x中有4个非空值,则noise_shape为[4],keep_tensor的元素为[keep_prob, 1.0 + keep_prob)的均匀分布,通过tf.floor向下取整得到标记张量drop_mask,tf.sparse_retain用于在一个 SparseTensor 中保留指定的非空值。

案例

def nn_dropout(x, keep_prob, noise_shape):
 out = tf.nn.dropout(x, keep_prob, noise_shape)
 return out


def layers_dropout(x, keep_prob, noise_shape, training=False):
 out = tf.layers.dropout(x, keep_prob, noise_shape, training=training)
 return out


def sparse_dropout(x, keep_prob, noise_shape):
 keep_tensor = keep_prob + tf.random_uniform(noise_shape)
 drop_mask = tf.cast(tf.floor(keep_tensor), dtype=tf.bool)
 out = tf.sparse_retain(x, drop_mask)
 return out * (1.0/keep_prob)


if __name__ == '__main__':
 inputs1 = tf.SparseTensor(indices=[[0, 0], [0, 2], [1, 1], [1, 2]], values=[1.0, 2.0, 3.0, 4.0], dense_shape=[2, 3])
 inputs2 = tf.sparse_tensor_to_dense(inputs1)
 nn_d_out = nn_dropout(inputs2, 0.5, [2, 3])
 layers_d_out = layers_dropout(inputs2, 0.5, [2, 3], training=True)
 sparse_d_out = sparse_dropout(inputs1, 0.5, [4])
 with tf.Session() as sess:
  sess.run(tf.global_variables_initializer())
  (in1, in2) = sess.run([inputs1, inputs2])
  print(in1)
  print(in2)
  (out1, out2, out3) = sess.run([nn_d_out, layers_d_out, sparse_d_out])
  print(out1)
  print(out2)
  print(out3)

tensorflow中,稀疏张量为SparseTensor,稀疏张量的值为SparseTensorValue。3种dropout的输出如下,

SparseTensorValue(indices=array([[0, 0],
  [0, 2],
  [1, 1],
  [1, 2]], dtype=int64), values=array([ 1., 2., 3., 4.], dtype=float32), dense_shape=array([2, 3], dtype=int64))
[[ 1. 0. 2.]
 [ 0. 3. 4.]]
 
[[ 2. 0. 0.]
 [ 0. 0. 0.]]
[[ 0. 0. 4.]
 [ 0. 0. 0.]]
SparseTensorValue(indices=array([], shape=(0, 2), dtype=int64), values=array([], dtype=float32), dense_shape=array([2, 3], dtype=int64))
 

到此这篇关于Tensorflow中的dropout的使用方法的文章就介绍到这了,更多相关Tensorflow dropout内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 在前女友婚礼上,用Python破解了现场的WIFI还把名称改成了

    在前女友婚礼上,用Python破解了现场的WIFI还把名称改成了

    今日重点:① python暴力拿下WiFi密码,②python拿下路由器管理页面,文中有非常详细的代码示例,干货满满,,需要的朋友可以参考下
    2021-05-05
  • Linux-ubuntu16.04 Python3.5配置OpenCV3.2的方法

    Linux-ubuntu16.04 Python3.5配置OpenCV3.2的方法

    下面小编就为大家分享一篇Linux-ubuntu16.04 Python3.5配置OpenCV3.2的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • python递归函数求n的阶乘,优缺点及递归次数设置方式

    python递归函数求n的阶乘,优缺点及递归次数设置方式

    这篇文章主要介绍了python递归函数求n的阶乘,优缺点及递归次数设置方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04
  • PyCharm如何导入python项目的方法

    PyCharm如何导入python项目的方法

    这篇文章主要介绍了PyCharm如何导入python项目的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-02-02
  • Python configparser模块常用方法解析

    Python configparser模块常用方法解析

    这篇文章主要介绍了Python configparser模块常用方法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-05-05
  • python处理csv数据的方法

    python处理csv数据的方法

    这篇文章主要介绍了python处理csv数据的方法,实例分析了Python处理csv数据的技巧,需要的朋友可以参考下
    2015-03-03
  • Python中UiAutomation库的使用

    Python中UiAutomation库的使用

    UiAutomation库主要用于自动化测试和 UI 操作的场景,本文就来介绍一下Python中UiAutomation库的使用,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-12-12
  • 深入浅析python 中的匿名函数

    深入浅析python 中的匿名函数

    匿名函数指一类无须定义标识符的函数或子程序。接下来通过本文给大家介绍python 中的匿名函数,感兴趣的朋友跟随脚本之家小编一起学习吧
    2018-05-05
  • Python取读csv文件做dbscan分析

    Python取读csv文件做dbscan分析

    这篇文章主要介绍了Python取读csv文件做dbscan分析,读取csv文件中相应的列,然后进行转化,处理为本算法需要的格式,然后进行dbscan运算,下面文章的具体介绍需要的小伙伴可以参考一下
    2022-04-04
  • python实现动态创建类的方法分析

    python实现动态创建类的方法分析

    这篇文章主要介绍了python实现动态创建类的方法,结合实例形式分析了Python动态创建类的原理、实现方法及相关操作技巧,需要的朋友可以参考下
    2019-06-06

最新评论