OpenCV实现帧差法检测运动目标
更新时间:2020年03月21日 09:25:15 作者:DY580C
这篇文章主要为大家详细介绍了OpenCV实现帧差法检测运动目标,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
今天的目标是用OpenCV实现对运动目标的检测,这里选用三帧帧差法。代码如下:
#include <opencv2/opencv.hpp> #include <cv.h> #include <highgui.h> #include <stdio.h> #include <ctype.h> double Threshold_index=0; const int CONTOUR_MAX_AERA = 200; void trackbar(int pos) { Threshold_index=(double)pos; } int main(int argc, char* argv[]) { CvCapture *capture=cvCaptureFromCAM(0); int n_cnt=0; IplImage *img=NULL, *img_gray1=NULL, *img_gray2=NULL, *img_gray3=NULL, *img_diff1=NULL, *img_diff2=NULL, *img_diff_and=NULL, *img_binary=NULL, *img_dilate=NULL; CvMemStorage *stor; CvSeq *cont; stor=cvCreateMemStorage(0); cont=cvCreateSeq(CV_SEQ_ELTYPE_POINT,sizeof(CvSeq),sizeof(CvPoint),stor); cvNamedWindow("test",CV_WINDOW_AUTOSIZE); cvNamedWindow("dilate",CV_WINDOW_AUTOSIZE); img=cvQueryFrame(capture); img_gray1=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1); img_gray2=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1); img_gray3=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1); img_diff1=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1); img_diff2=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1); img_diff_and=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1); img_binary=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1); img_dilate=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1); int index=1; cvCreateTrackbar("Threshold","test",&index,255,trackbar); while(img=cvQueryFrame(capture)) { if(n_cnt%3==0) cvCvtColor(img,img_gray1,CV_BGR2GRAY); else if(n_cnt%3==1) cvCvtColor(img,img_gray2,CV_BGR2GRAY); else if(n_cnt%3==2) cvCvtColor(img,img_gray3,CV_BGR2GRAY); char c=(char)cvWaitKey(25); if(c==27) break; if(n_cnt>3) { cvAbsDiff(img_gray1,img_gray2,img_diff1); cvAbsDiff(img_gray2,img_gray3,img_diff2); cvAnd(img_diff1,img_diff2,img_diff_and); cvThreshold(img_diff_and,img_binary,Threshold_index,255,CV_THRESH_BINARY); cvShowImage("test",img_binary); cvDilate(img_binary,img_dilate); //cvShowImage("dilate",img_dilate); cvFindContours(img_dilate,stor,&cont,sizeof(CvContour),CV_RETR_LIST,CV_CHAIN_APPROX_SIMPLE,cvPoint(0,0)); for(;cont;cont = cont->h_next) { CvRect r = ((CvContour*)cont)->rect;//子类转换为父类例子 if(r.height * r.width > CONTOUR_MAX_AERA) // 面积小的方形抛弃掉 { cvRectangle(img, cvPoint(r.x,r.y), cvPoint(r.x + r.width, r.y + r.height), CV_RGB(255,0,0), 1, CV_AA,0); } } cvShowImage("dilate",img); } if(c=='s') { cvSaveImage("d:/img.bmp",img); cvSaveImage("d:/img_binary.bmp",img_dilate); } n_cnt++; } cvDestroyAllWindows(); cvReleaseCapture(&capture); cvReleaseImage(&img_gray1); cvReleaseImage(&img_gray2); cvReleaseImage(&img_gray3); cvReleaseImage(&img_diff1); cvReleaseImage(&img_diff2); cvReleaseImage(&img_diff_and); cvReleaseImage(&img_binary); cvReleaseImage(&img_dilate); cvReleaseMemStorage(&stor); return 0; }
下图是检测的运动目标二值化图像以及在实际图像中叠加的矩形框效果图。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
最新评论