基于Python共轭梯度法与最速下降法之间的对比

 更新时间:2020年04月02日 16:54:13   作者:像在吹  
这篇文章主要介绍了基于Python共轭梯度法与最速下降法之间的对比,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

在一般问题的优化中,最速下降法和共轭梯度法都是非常有用的经典方法,但最速下降法往往以”之”字形下降,速度较慢,不能很快的达到最优值,共轭梯度法则优于最速下降法,在前面的某个文章中,我们给出了牛顿法和最速下降法的比较,牛顿法需要初值点在最优点附近,条件较为苛刻。

算法来源:《数值最优化方法》高立,P111

我们选用了64维的二次函数来作为验证函数,具体参见上书111页。

采用的三种方法为:

共轭梯度方法(FR格式)、共轭梯度法(PRP格式)、最速下降法

# -*- coding: utf-8 -*-
"""
Created on Sat Oct 01 15:01:54 2016
@author: zhangweiguo
"""
import sympy,numpy
import math
import matplotlib.pyplot as pl
from mpl_toolkits.mplot3d import Axes3D as ax3
import SD#这个文件里有最速下降法SD的方法,参见前面的博客
#共轭梯度法FR、PRP两种格式
def CG_FR(x0,N,E,f,f_d):
  X=x0;Y=[];Y_d=[];
  n = 1
  ee = f_d(x0)
  e=(ee[0]**2+ee[1]**2)**0.5
  d=-f_d(x0)
  Y.append(f(x0)[0,0]);Y_d.append(e)
  a=sympy.Symbol('a',real=True)
  print '第%2s次迭代:e=%f' % (n, e)
  while n<N and e>E:
    n=n+1
    g1=f_d(x0)
    f1=f(x0+a*f_d(x0))
    a0=sympy.solve(sympy.diff(f1[0,0],a,1))
    x0=x0-d*a0
    X=numpy.c_[X,x0];Y.append(f(x0)[0,0])
    ee = f_d(x0)
    e = math.pow(math.pow(ee[0,0],2)+math.pow(ee[1,0],2),0.5)
    Y_d.append(e)
    g2=f_d(x0)
    beta=(numpy.dot(g2.T,g2))/numpy.dot(g1.T,g1)
    d=-f_d(x0)+beta*d
    print '第%2s次迭代:e=%f'%(n,e)
  return X,Y,Y_d
def CG_PRP(x0,N,E,f,f_d):
  X=x0;Y=[];Y_d=[];
  n = 1
  ee = f_d(x0)
  e=(ee[0]**2+ee[1]**2)**0.5
  d=-f_d(x0)
  Y.append(f(x0)[0,0]);Y_d.append(e)
  a=sympy.Symbol('a',real=True)
  print '第%2s次迭代:e=%f' % (n, e)
  while n<N and e>E:
    n=n+1
    g1=f_d(x0)
    f1=f(x0+a*f_d(x0))
    a0=sympy.solve(sympy.diff(f1[0,0],a,1))
    x0=x0-d*a0
    X=numpy.c_[X,x0];Y.append(f(x0)[0,0])
    ee = f_d(x0)
    e = math.pow(math.pow(ee[0,0],2)+math.pow(ee[1,0],2),0.5)
    Y_d.append(e)
    g2=f_d(x0)
    beta=(numpy.dot(g2.T,g2-g1))/numpy.dot(g1.T,g1)
    d=-f_d(x0)+beta*d
    print '第%2s次迭代:e=%f'%(n,e)
  return X,Y,Y_d
if __name__=='__main__':
  '''
  G=numpy.array([[21.0,4.0],[4.0,15.0]])
  #G=numpy.array([[21.0,4.0],[4.0,1.0]])
  b=numpy.array([[2.0],[3.0]])
  c=10.0
  x0=numpy.array([[-10.0],[100.0]])
  '''
  
  m=4
  T=6*numpy.eye(m)
  T[0,1]=-1;T[m-1,m-2]=-1
  for i in xrange(1,m-1):
    T[i,i+1]=-1
    T[i,i-1]=-1
  W=numpy.zeros((m**2,m**2))
  W[0:m,0:m]=T
  W[m**2-m:m**2,m**2-m:m**2]=T
  W[0:m,m:2*m]=-numpy.eye(m)
  W[m**2-m:m**2,m**2-2*m:m**2-m]=-numpy.eye(m)
  for i in xrange(1,m-1):
    W[i*m:(i+1)*m,i*m:(i+1)*m]=T
    W[i*m:(i+1)*m,i*m+m:(i+1)*m+m]=-numpy.eye(m)
    W[i*m:(i+1)*m,i*m-m:(i+1)*m-m]=-numpy.eye(m)
  mm=m**2
  mmm=m**3
  G=numpy.zeros((mmm,mmm))
  G[0:mm,0:mm]=W;G[mmm-mm:mmm,mmm-mm:mmm]=W;
  G[0:mm,mm:2*mm]=-numpy.eye(mm)
  G[mmm-mm:mmm,mmm-2*mm:mmm-mm]=-numpy.eye(mm)
  for i in xrange(1,m-1):
    G[i*mm:(i+1)*mm,i*mm:(i+1)*mm]=W
    G[i*mm:(i+1)*mm,i*mm-mm:(i+1)*mm-mm]=-numpy.eye(mm)
    G[i*mm:(i+1)*mm,i*mm+mm:(i+1)*mm+mm]=-numpy.eye(mm)
  x_goal=numpy.ones((mmm,1))
  b=-numpy.dot(G,x_goal)
  c=0
  f = lambda x: 0.5 * (numpy.dot(numpy.dot(x.T, G), x)) + numpy.dot(b.T, x) + c
  f_d = lambda x: numpy.dot(G, x) + b
  x0=x_goal+numpy.random.rand(mmm,1)*100
  N=100
  E=10**(-6)
  print '共轭梯度PR'
  X1, Y1, Y_d1=CG_FR(x0,N,E,f,f_d)
  print '共轭梯度PBR'
  X2, Y2, Y_d2=CG_PRP(x0,N,E,f,f_d)
  figure1=pl.figure('trend')
  n1=len(Y1)
  n2=len(Y2)
  x1=numpy.arange(1,n1+1)
  x2=numpy.arange(1,n2+1)
  
  X3, Y3, Y_d3=SD.SD(x0,N,E,f,f_d)
  n3=len(Y3)
  x3=range(1,n3+1)
  pl.semilogy(x3,Y3,'g*',markersize=10,label='SD:'+str(n3))
  pl.semilogy(x1,Y1,'r*',markersize=10,label='CG-FR:'+str(n1))
  pl.semilogy(x2,Y2,'b*',markersize=10,label='CG-PRP:'+str(n2))
  pl.legend()
  #图像显示了三种不同的方法各自迭代的次数与最优值变化情况,共轭梯度方法是明显优于最速下降法的
  pl.xlabel('n')
  pl.ylabel('f(x)')
  pl.show()

最优值变化趋势:

从图中可以看出,最速下降法SD的迭代次数是最多的,在与共轭梯度(FR与PRP两种方法)的比较中,明显较差。

补充知识:python实现牛顿迭代法和二分法求平方根,精确到小数点后无限多位-4

首先来看一下牛顿迭代法求平方根的过程:计算3的平方根

如图,是求根号3的牛顿迭代法过程。这里使用的初始迭代值(也就是猜测值)为1,其实可以为任何值最终都能得到结果。每次开始,先检测猜测值是否合理,不合理时,用上面的平均值来换掉猜测值,依次继续迭代,直到猜测值合理。

原理:现在取一个猜测值 a, 如果猜测值合理的话,那么就有a^2=x,即x/a=a ,x为被开方数。不合理的话呢,就用表中的猜测值和商的平均值来换掉猜测值。当不合理时,比如 a>真实值,那么x/a<真实值,这时候取a 与 x/a 的平均值来代替a的话,那么新的a就会比原来的a要更接近真实值。同理有 a<真实值 的情况。于是,这样不断迭代下去最终是一个a不断收敛到真实值的一个过程。于是不断迭代就能得到真实值,证明了迭代法是正确的。

附上我的python代码:

利用python整数运算,python整数可以无限大,可以实现小数点后无限多位

#二分法求x的平方根小数点下任意K位数的精准值,利用整数运算 #思想:利用二分法,每次乘以10,取中间值,比较大小,从而定位精确值的范围,将根扩大10倍,则被开方数扩大100倍。 #quotient(商)牛顿迭代法:先猜测一个值,再求商,然后用猜测值和商的中间值代替猜测值,扩大倍数,继续进行。

 
 
import math
from math import sqrt
 
def check_precision(l,h,p,len1):#检查是否达到了精确位
  l=str(l);h=str(h)
  if len(l)<=len1+p or len(h)<=len1+p:
    return False
  for i in range(len1,p+len1):#检查小数点后面的p个数是否相等
    if l[i]!=h[i]:     #当l和h某一位不相等时,说明没有达到精确位
      return False
  return True
 
def print_result(x,len1,p):
  x=str(x)
  if len(x)-len1<p:#没有达到要求的精度就已经找出根
    s=x[:len1]+"."+x[len1:]+'0'*(p-len(x)+len1)
  else:s=x[:len1]+"."+x[len1:len1+p]
  print(s)
 
def binary_sqrt(x,p):
  x0=int(sqrt(x))
  if x0*x0==x: #完全平方数直接开方,不用继续进行
    print_result(x0,len(str(x0)),p)
    return 
  len1=len(str(x0))#找出整数部分的长度
  l=0;h=x
  while(not check_precision(l,h,p,len1)):#没有达到精确位,继续循环
    if not l==0:#第一次l=0,h=x时不用乘以10,直接取中间值
      h=h*10 #l,h每次扩大10倍
      l=l*10
      x=x*100 #x每次要扩大100倍,因为平方
    m=(l+h)//2
    if m*m==x:
      return print_result(m,len1,p)
    elif m*m>x:
      h=m
    else:
      l=m
  return print_result(l,len1,p)#当达到了要求的精度,直接返回l
 
#牛顿迭代法求平方根
def newton_sqrt(x,p):
  x0=int(sqrt(x))
  if x0*x0==x: #完全平方数直接开方,不用继续进行
    print_result(x0,len(str(x0)),p)
    return
  len1=len(str(x0))#找出整数部分的长度
  g=1;q=x//g;g=(g+q)//2
  while(not check_precision(g,q,p,len1)):
    x=x*100
    g=g*10
    q=x//g   #求商
    g=(g+q)//2 #更新猜测值为猜测值和商的中间值
  return print_result(g,len1,p)
 
while True:  
  x=int(input("请输入待开方数:"))
  p=int(input("请输入精度:"))
  print("binary_sqrt:",end="")
  binary_sqrt(x,p)
  print("newton_sqrt:",end="")
  newton_sqrt(x,p)

以上这篇基于Python共轭梯度法与最速下降法之间的对比就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • python爬虫之你好,李焕英电影票房数据分析

    python爬虫之你好,李焕英电影票房数据分析

    这篇文章主要介绍了python爬虫之你好,李焕英电影票房数据分析,文中有非常详细的代码示例,对正在学习python爬虫的小伙伴们有一定的帮助,需要的朋友可以参考下
    2021-04-04
  • python3 http提交json参数并获取返回值的方法

    python3 http提交json参数并获取返回值的方法

    今天小编就为大家分享一篇python3 http提交json参数并获取返回值的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • PyQt信号和槽机制的具体使用

    PyQt信号和槽机制的具体使用

    信号和槽机制是一种通信机制,在PyQt中,信号是一种特殊的函数,它可以传递任何类型的数据,而槽则是一种接收信号的函数,本文就介绍了PyQt信号和槽机制的具体使用,感兴趣的可以了解一下
    2023-08-08
  • 简单谈谈python中的语句和语法

    简单谈谈python中的语句和语法

    下面小编就为大家带来一篇简单谈谈python中的语句和语法。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-08-08
  • 使用Python制作读单词视频的实现代码

    使用Python制作读单词视频的实现代码

    我们经常在B站或其他视频网站上看到那种逐条读单词的视频,但他们的视频多多少少和我们的预期都不太一致,然而,网上很难找到和自己需求符合的视频,所以本文给大家介绍了使用Python制作读单词视频的实现,需要的朋友可以参考下
    2024-04-04
  • python如何实现DES加密

    python如何实现DES加密

    这篇文章主要介绍了python如何实现DES加密,帮助大家更好的理解和学习密码学,感兴趣的朋友可以了解下
    2020-09-09
  • Python中删除文件的程序代码

    Python中删除文件的程序代码

    很多软件在运行时会自动创建一些备份文件,在程序退出后又不自动删除备份文件,随着文件数量的增加,每隔一段时间就要清理一下。
    2011-03-03
  • 解决python opencv无法显示图片的问题

    解决python opencv无法显示图片的问题

    今天小编就为大家分享一篇解决python opencv无法显示图片的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-10-10
  • 基于Django的乐观锁与悲观锁解决订单并发问题详解

    基于Django的乐观锁与悲观锁解决订单并发问题详解

    这篇文章主要介绍了基于Django的乐观锁与悲观锁解决订单并发问题详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07
  • Python实现的数据结构与算法之链表详解

    Python实现的数据结构与算法之链表详解

    这篇文章主要介绍了Python实现的数据结构与算法之链表,详细分析了链表的概念、定义及Python实现与使用链表的相关技巧,非常具有实用价值,需要的朋友可以参考下
    2015-04-04

最新评论