python实现将两个文件夹合并至另一个文件夹(制作数据集)

 更新时间:2020年04月03日 15:12:52   作者:朴素.无恙  
这篇文章主要介绍了python实现将两个文件夹合并至另一个文件夹(制作数据集),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

此操作目的是为了制作自己的数据集,深度学习框架进行数据准备,此操作步骤包括对文件夹进行操作,将两个文件夹合并至另一个文件夹

该实例为一个煤矿工人脸识别的案例;首先原始数据集(简化版的数据集旨在说明数据准备过程)如下图所示:

该数据集只有三个人的数据,A01代表工人甲的煤矿下的照片,B01代表工人甲下矿前的照片,同理A02、B02代表工人乙的矿下、矿上的照片数据。。。

如下图所示

矿下

矿上

开始制作数据集:

首先建立训练集(0.7)和测试集(0.3),即建立一个空白文件夹

将该文件夹分为四个小文件夹(空),train代表训练集,val代表测试集,valb代表矿井下的测试集,vall代表矿井上的测试集,注:后边两个测试集可有可无

最终制作的数据集如下所示:

下面为所有的程序详解

#导入一些进行该操作需要的库
import numpy as np
import os
import random
import shutil

path=r'C:\Users\Administrator.SKY-20180518VHY\Desktop\rx\ore'#原始数据集的路径
data=os.listdir(path)
#listdir该操作([添加链接描述](https://www.jb51.net/article/184106.htm))在我的上篇文章中有所介绍,此操作能读取的内容为A01、A02、A03、B01、B02、B03这些文件夹
#print(data)

root=path#复制原始数据路径path

读取文件夹 A01、A02、A03、存入c列表中B01、B02、B03,将其存入d列表中

c=[]
d=[]#创建两个空列表
for i in range(len(data)):
 a=data[i][0]
 if (a=='A'):
  c.append(data[i])
 else:
  d.append(data[i])
#print(d)

导入路径四个空文件夹的路径

train_root='C:\\Users\\Administrator.SKY-20180518VHY\\Desktop\\myself\\train'
val_root='C:\\Users\\Administrator.SKY-20180518VHY\\Desktop\\myself\\val'
vall_root='C:\\Users\\Administrator.SKY-20180518VHY\\Desktop\\myself\\valb'
valb_root='C:\\Users\\Administrator.SKY-20180518VHY\\Desktop\\myself\\vall'


for i in range(len(c)):
 qqq=os.path.exists(train_root+'/'+c[i][1:])
 if (not qqq):
  os.mkdir(train_root+'/'+c[i][1:])
  qq=os.path.exists(val_root+'/'+c[i][1:])
  if (not qq):
   os.mkdir(val_root+'/'+c[i][1:])
   qq=os.path.exists(vall_root+'/'+c[i][1:])
   if (not qq):
    os.mkdir(vall_root+'/'+c[i][1:])
    qq=os.path.exists(valb_root+'/'+c[i][1:])
    if (not qq):
     os.mkdir(valb_root+'/'+c[i][1:])
#f=[]
#g=[]
aq='C:\\Users\\Administrator.SKY-20180518VHY\\Desktop\\rx\\ore\\'
train_root1='C:\\Users\\Administrator.SKY-20180518VHY\\Desktop\\myself\\train\\'
val_root1='C:\\Users\\Administrator.SKY-20180518VHY\\Desktop\\myself\\val\\'
vall_root1='C:\\Users\\Administrator.SKY-20180518VHY\\Desktop\\myself\\valb\\'
valb_root1='C:\\Users\\Administrator.SKY-20180518VHY\\Desktop\\myself\\vall\\'
for i in range(len(c)):
 a=c[i]
 data_0=os.listdir(aq+a)
# f.append(data_0)
# g.append(aq+a)
#print(f)
#print(g) 
 random.shuffle(data_0)#打乱A中数据
 for j in range(len(d)):
  b=d[j]
  if(a[1:]==b[1:]):
   data_1=os.listdir(aq+b)
   #print(aq+b);
   random.shuffle(data_1)
   #print(data_1)
   #print(data_0,data_1)
   for z in range(len(data_0)):
    #print(z)
    pic_path=aq+a+'/'+data_0[z]
    
    if z<int(len(data_0)*0.7):
     obj_path=train_root1+a[1:]+'/'+data_0[z]
     
    else:
     obj_path=val_root1+a[1:]+'/'+data_0[z]
     obl_path=vall_root1+a[1:]+'/'+data_0[z]
     shutil.copyfile(pic_path,obl_path)
   #print(len(data_0),len(data_0)*0.7)
    #if (os.path.exists(pic_path)):
    shutil.copyfile(pic_path,obj_path)
   for z in range(len(data_1)):
    pic_path=aq+b+'/'+data_1[z]
    if z<int(len(data_1)*0.7):
     obj_path=train_root1+b[1:]+'/'+data_1[z]
     
    else:
     obj_path=val_root1+b[1:]+'/'+data_1[z]
     obl_path=valb_root1+a[1:]+'/'+data_1[z]
     shutil.copyfile(pic_path,obl_path)
    #if (os.path.exists(pic_path)):
    shutil.copyfile(pic_path,obj_path)#shutil.copyfile( src, dst) 

从源src复制到dst中去。当然前提是目标地址是具备可写权限。抛出的异常信息为IOException. 如果当前的dst已存在的话就会被覆盖掉

将数据送入pytorch中,对数据进行迭代

from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
import math
import torch.nn.functional as F

D=299

data_transforms = {
 'train': transforms.Compose([
#  transforms.RandomResizedCrop(D),
  transforms.Resize(D),
  transforms.RandomCrop(D),
  transforms.RandomHorizontalFlip(),
  transforms.ToTensor(),
  transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
 ]),
 'val': transforms.Compose([
  transforms.Resize(D),
  transforms.CenterCrop(D),
  transforms.ToTensor(),
  transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
 ]),
}

data_dir = r'C:\Users\Administrator.SKY-20180518VHY\Desktop\myself'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
           data_transforms[x])
     for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=200,
            shuffle=True, num_workers=4)
    for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#print(image_datasets['train'][0])
img, label = image_datasets['val'][11] 
print(label)#输出为2即第三类

以上这篇python实现将两个文件夹合并至另一个文件夹(制作数据集)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • 详解Python中type与object的恩怨纠葛

    详解Python中type与object的恩怨纠葛

    估计很多人都会有这样一个困惑,object 的类型是 type,但它同时又是 type 的基类,这是怎么做到的?带着这个疑问,我们开始本文的内容
    2023-04-04
  • 浅析PyTorch中nn.Linear的使用

    浅析PyTorch中nn.Linear的使用

    这篇文章主要介绍了浅析PyTorch中nn.Linear的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-08-08
  • python库ggpy安装使用实例(散点图创建)

    python库ggpy安装使用实例(散点图创建)

    这篇文章主要为大家介绍了python库ggpy安装使用实例,如何创建简单的散点图及制作带有趋势线的散点图详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2024-01-01
  • Python 检查数组元素是否存在类似PHP isset()方法

    Python 检查数组元素是否存在类似PHP isset()方法

    isset方法来检查数组元素是否存在,在Python中无对应函数,在Python中一般可以通过异常来处理数组元素不存在的情况,而无须事先检查
    2014-10-10
  • 快速进修Python指南之迭代器Iterator与生成器

    快速进修Python指南之迭代器Iterator与生成器

    这篇文章主要为大家介绍了Java开发者快速进修Python指南之迭代器Iterator与生成器示例解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-12-12
  • 如何用Python提取10000份log中的产品信息

    如何用Python提取10000份log中的产品信息

    这篇文章主要介绍了如何用Python提取10000份log中的产品信息,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2021-01-01
  • 使用Python获取网段IP个数以及地址清单的方法

    使用Python获取网段IP个数以及地址清单的方法

    今天小编就为大家分享一篇使用Python获取网段IP个数以及地址清单的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-11-11
  • 简单了解为什么python函数后有多个括号

    简单了解为什么python函数后有多个括号

    这篇文章主要介绍了简单了解为什么python函数后有多个括号,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-12-12
  • python中dict()的高级用法实现

    python中dict()的高级用法实现

    这篇文章主要介绍了python中dict()的高级用法实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-11-11
  • linux下安装easy_install的方法

    linux下安装easy_install的方法

    python中的easy_install工具,类似于Php中的pear,或者Ruby中的gem,或者Perl中的cpan,那是相当的爽歪歪了如果想使用
    2013-02-02

最新评论